Despite pioneering as the holy grail in photocatalysts, abundant reports have demonstrated that g-C3N4 performs poor photocatalytic activity due to its high recombination rate of photo-induced charge carriers. Many efforts have been conducted to overcome this limitation in which the semiconductor–semiconductor coupling strategies toward heterojunction formation were considered as the easiest but the most effective method. Herein, a one-pot solid-state reaction of thiourea and sodium molybdate as precursors at different temperatures under N2 gas was applied for preparing composites of MoS2/g-C3N4. The physicochemical characterization of the final products determines the variation in contents of components (MoS2 and g-C3N4) via the increase of synthesis temperature. The enhanced photocatalytic activity of the MoS2/g-C3N4 composites was evaluated by the degradation of Rhodamine B in an aqueous solution under visible light. Therein, composites synthesized at 500 °C showed the best photocatalytic performance with a degradation efficiency of 90%, much higher than that of single g-C3N4. The significant improvement in photocatalytic performance is attributed to the enhancement in light-harvesting and extension in photo-induced charge carriers’ lifetime of composites which are originated from the synergic effect between the components. Besides, the photocatalytic mechanism is demonstrated to well-fit into the S-scheme pathway with apparent evidences.
Two-dimensional (2D) layered GaSe films were grown on GaAs (001), GaN/Sapphire, and Mica substrates by molecular beam epitaxy (MBE). The in situ reflective high-energy electron diffraction monitoring reveals randomly in-plane orientations of nucleated GaSe layers grown on hexagonal GaN/Sapphire and Mica substrates, whereas single-orientation GaSe domain is predominant in the GaSe/GaAs (001) sample. Strong red-shifts in the frequency of in-plane
vibration modes and bound exciton emissions observed from Raman scattering and photoluminescence spectra in all samples are attributed to the unintentionally biaxial in-plane tensile strains, induced by the dissimilarity of symmetrical surface structure between the 2D-GaSe layers and the substrates during the epitaxial growth. The results in this study provide an important understanding of the MBE-growth process of 2D-GaSe on 2D/3D hybrid-heterostructures and pave the way in strain engineering and optical manipulation of 2D layered GaSe materials for novel optoelectronic integrated technologies.
N-doped TiO2-SBA-15 (denoted as N-TiO2-SBA-15) material has been successfully synthesized by a two-step procedure. Firstly, TiO2-SBA-15 was prepared by impregnating tetraisopropyl orthotitanate on SBA-15 and followed by calcination at 550°C. In the second step, TiO2-SBA-15 was modified by doping nitrogen with the assistance of urea. The resulting material, N-TiO2-SBA-15, was characterized by XRD, TEM, SEM, N2adsorption/desorption at 77 K, DR UV-Vis, and XPS. The results showed that N-TiO2-SBA-15 material maintains its ordered hexagonal mesostructure and exhibits the absorption of visible region. The photocatalytic activity of N-TiO2-SBA-15 sample was evaluated by the photodegradation of methylene blue under visible light.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.