The Simons Observatory (SO) is a new cosmic microwave background experiment being built on Cerro Toco in Chile, due to begin observations in the early 2020s. We describe the scientific goals of the experiment, motivate the design, and forecast its performance. SO will measure the temperature and polarization anisotropy of the cosmic microwave background in six frequency bands centered at: 27, 39, 93, 145, 225 and 280 GHz. The initial configuration of SO will have three small-aperture 0.5-m telescopes and one large-aperture 6-m telescope, with a total of 60,000 cryogenic bolometers. Our key science goals are to characterize the primordial perturbations, measure the number of relativistic species and the mass of neutrinos, test for deviations from a cosmological constant, improve our understanding of galaxy evolution, and constrain the duration of reionization. The small aperture telescopes will target the largest angular scales observable from Chile, mapping ≈ 10% of the sky to a white noise level of 2 µK-arcmin in combined 93 and 145 GHz bands, to measure the primordial tensor-to-scalar ratio, r, at a target level of σ(r) = 0.003. The large aperture telescope will map ≈ 40% of the sky at arcminute angular resolution to an expected white noise level of 6 µK-arcmin in combined 93 and 145 GHz bands, overlapping with the majority of the Large Synoptic Survey Telescope sky region and partially with the Dark Energy Spectroscopic Instrument. With up to an order of magnitude lower polarization noise than maps from the Planck satellite, the high-resolution sky maps will constrain cosmological parameters derived from the damping tail, gravitational lensing of the microwave background, the primordial bispectrum, and the thermal and kinematic Sunyaev-Zel'dovich effects, and will aid in delensing the large-angle polarization signal to measure the tensorto-scalar ratio. The survey will also provide a legacy catalog of 16,000 galaxy clusters and more than 20,000 extragalactic sources a .
We present new arcminute-resolution maps of the Cosmic Microwave Background temperature and polarization anisotropy from the Atacama Cosmology Telescope, using data taken from 2013–2016 at 98 and 150 GHz. The maps cover more than 17,000 deg2, the deepest 600 deg2 with noise levels below 10μK-arcmin. We use the power spectrum derived from almost 6,000 deg2 of these maps to constrain cosmology. The ACT data enable a measurement of the angular scale of features in both the divergence-like polarization and the temperature anisotropy, tracing both the velocity and density at last-scattering. From these one can derive the distance to the last-scattering surface and thus infer the local expansion rate, H 0. By combining ACT data with large-scale information from WMAP we measure H 0=67.6± 1.1 km/s/Mpc, at 68% confidence, in excellent agreement with the independently-measured Planck satellite estimate (from ACT alone we find H 0=67.9± 1.5 km/s/Mpc). The ΛCDM model provides a good fit to the ACT data, and we find no evidence for deviations: both the spatial curvature, and the departure from the standard lensing signal in the spectrum, are zero to within 1σ; the number of relativistic species, the primordial Helium fraction, and the running of the spectral index are consistent with ΛCDM predictions to within 1.5–2.2σ. We compare ACT, WMAP, and Planck at the parameter level and find good consistency; we investigate how the constraints on the correlated spectral index and baryon density parameters readjust when adding CMB large-scale information that ACT does not measure. The DR4 products presented here will be publicly released on the NASA Legacy Archive for Microwave Background Data Analysis.
We use the Ly-α forest power spectrum measured by the Sloan Digital Sky Survey (SDSS) and high-resolution spectroscopy observations in combination with cosmic microwave background and galaxy clustering constraints to place limits on a sterile neutrino as a dark matter candidate in the warm dark matter (WDM) scenario. Such a neutrino would be created in the early universe through mixing with an active neutrino and would suppress structure on scales smaller than its free streaming scale. We ran a series of high-resolution hydrodynamic simulations with varying neutrino mass to describe the effect of a sterile neutrino on the Ly-α forest power spectrum. We find that the mass limit is ms > 14keV at 95% c.l. (10keV at 99.9%), which is nearly an order of magnitude tighter constraint than previously published limits and is above the upper limit allowed by X-ray constraints, excluding this candidate as dark matter in this model. The corresponding limit for a neutrino that decoupled early while in thermal equilibrium is 2.5keV (95 % c.l.). One of the major unsolved mysteries in cosmology is the nature of the dark matter in the universe. Observational evidence points towards cold dark matter (CDM), for which random velocities are negligible. Two of the leading particle physics candidates, the lightest supersymmetric partner and axions, both require extensions beyond the standard model. At the same time, neutrino experiments over the past decade have shown that neutrinos oscillate from one flavor to another, which is only possible if they have mass. Current data from atmospheric and solar neutrino experiments [1,2] are compatible with mixing between the three active neutrino families. Perhaps the simplest way to incorporate these neutrino phenomena into the standard model is to add right-handed neutrinos, just as for other fermions.Given this extension of the standard model it is natural to ask if these (almost) sterile right-handed neutrinos can also explain the dark matter [3]. At least two sterile neutrinos are required to explain the origin of neutrino mass and existence of different mass mixing scales in solar and atmospheric neutrinos, so in a model with three families of sterile neutrinos a third one can act as dark matter [4]. Such neutrinos free stream and erase all fluctuations on scales smaller than the free streaming length. This length is roughly proportional to the temperature and inversely proportional to the mass of neutrinos. Thus if the neutrino mass is sufficiently high, or the temperature sufficiently low, then it acts just like CDM and can satisfy all of the observational constraints from structure formation. Current constraints require the neutrino mass to be above 1.8keV [5,6]. This is below the 5-8keV upper limits from the absence of detection of X-ray photons from radiative decays [7,8,9,10]. A massive neutrino in the keV range has also been suggested as a possible explanation for high pulsar velocities [11] and such a model can possibly explain baryon asymmetry in the universe [12].A sterile neutri...
We present cosmological parameters derived from the angular power spectrum of the cosmic microwave background (CMB) radiation observed at 148 GHz and 218 GHz over 296 deg 2 with the Atacama Cosmology Telescope (ACT) during its 2008 season. ACT measures fluctuations at scales 500 < < 10,000. We fit a model for the lensed CMB, Sunyaev-Zel'dovich (SZ), and foreground contribution to the 148 GHz and 218 GHz power spectra, including thermal and kinetic SZ, Poisson power from radio and infrared point sources, and clustered power from infrared point sources. At = 3000, about half the power at 148 GHz comes from primary CMB after masking bright radio sources. The power from thermal and kinetic SZ is estimated to be B 3000 = 6.8 ± 2.9 μK 2 , where B ≡ ( + 1)C /2π . The IR Poisson power at 148 GHz is B 3000 = 7.8 ± 0.7 μK 2 (C = 5.5 ± 0.5 nK 2 ), and a clustered IR component is required with B 3000 = 4.6 ± 0.9 μK 2 , assuming an analytic model for its power spectrum shape. At 218 GHz only about 15% of the power, approximately 27 μK 2 , is CMB anisotropy at = 3000. The remaining 85% is attributed to IR sources (approximately 50% Poisson and 35% clustered), with spectral index α = 3.69 ± 0.14 for flux scaling as S(ν) ∝ ν α . We estimate primary cosmological parameters from the less contaminated 148 GHz spectrum, marginalizing over SZ and source power. The ΛCDM cosmological model is a good fit to the data (χ 2 /dof = 29/46), and ΛCDM parameters estimated from ACT+Wilkinson Microwave Anisotropy Probe (WMAP) are consistent with the seven-year WMAP limits, with scale invariant n s = 1 excluded at 99.7% confidence level (CL) (3σ ). A model with no CMB lensing is disfavored at 2.8σ . By measuring the third to seventh acoustic peaks, and probing the Silk damping regime, the ACT data improve limits on cosmological parameters that affect the small-scale CMB power. The ACT data combined with WMAP give a 6σ detection of primordial helium, with Y P = 0.313 ± 0.044, and a 4σ detection of relativistic species, assumed to be neutrinos, with N eff = 5.3 ± 1.3 (4.6 ± 0.8 with BAO+H 0 data). From the CMB alone the running of the spectral index is constrained to be dn s /d ln k = −0.034 ± 0.018, the limit on the tensor-to-scalar ratio is r < 0.25 (95% CL), and the possible contribution of Nambu cosmic strings to the power spectrum is constrained to string tension Gμ < 1.6 × 10 −7 (95% CL).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.