These results suggest that macrophages are an important mediator in the initiation period of ischaemia/reperfusion injury and strategies that limit initial macrophage infiltration or activation can be useful in the treatment of acute renal failure.
These data provide evidence that ERK1/2 pathway functions as an upstream signal for TNF-alpha-mediated inflammation and caspase 3-mediated apoptosis in cisplatin-induced ARF in mice and suggest that ERK1/2 can be a novel therapeutic target in cisplatin nephrotoxicity.
Aldosterone induces myocardial fibrosis and vascular inflammation via proinflammatory and profibrotic cytokines. The effect of spironolactone on renal inflammation and renal function was investigated in type 2 diabetic rats. For define the molecular mechanism of spironolactone, the effect of spironolactone on the synthesis of monocyte chemotactic peptide-1 (MCP-1) and its upstream transcription factor, NF-B, was evaluated in cultured mesangial cells and proximal tubular cells. There were no changes in blood glucose concentration or BP after spironolactone treatment. Spironolactone treatment significantly reduced urinary albumin excretion and ameliorated glomerulosclerosis. Urinary levels of MCP-1 were significantly increased concurrently with renal expression of MCP-1, macrophage migration inhibitory factor, and macrophage infiltration. Spironolactone treatment significantly inhibited urinary excretion of MCP-1 as well as renal MCP-1 and migration inhibitory factor expression and macrophage infiltration. In addition, aldosterone induced upregulation of MCP-1 expression and NF-B transcriptional activity in cultured cells, and spironolactone reduced both NF-B activation and MCP-1 synthesis. Furthermore, NF-B inhibition abolished aldosterone-induced MCP-1 production. Overall, these findings suggest that aldosteroneinduced NF-B activation leads to activation of proinflammatory cytokines, ultimately leading to renal injury in this model. These data suggest that mineralocorticoid blockade may be a potential therapeutic target in diabetic nephropathy.
Background. Ischaemia/reperfusion is a major cause of acute kidney injury and can result in poor long-term graft function. Although most of the patients with acute kidney injury recover their renal function, significant portion of patients suffer from progressive deterioration of renal function. A persistent inflammatory response might be associated with long-term changes following acute ischaemia/reperfusion. Macrophages are known to infiltrate into tubulointersitium in animal models of chronic kidney disease. However, the role of macrophages in long-term changes after ischaemia/reperfusion remains unknown. We aimed to investigate the role of macrophages on the development of tubulointerstitial fibrosis and functional impairment following acute ischaemia/reperfusion injury by depleting macrophages with liposome clodronate. Methods. Male Sprague-Dawley rats underwent right nephrectomy and clamping of left renal vascular pedicle or sham operation. Liposome clodronate or phosphate buffered saline was administered for 8 weeks. Biochemical and histological renal damage and gene expression of various cytokines were assessed at 4 and 8 weeks after ischaemia/reperfusion. Results. Ischaemic/reperfusion injury resulted in persistent inflammation and tubulointerstital fibrosis with decreased creatinine clearance and increased urinary albumin excretion at 4 and 8 weeks. Macrophage depletion attenuated those changes. This beneficial effect was accompanied with a decrease in gene expression of inflammatory and profibrotic cytokines. Conclusions. These results suggest that macrophages play an important role in mediating persistent inflammation and fibrosis after ischaemia/reperfusion leading to a development of chronic kidney disease. Strategies targeting macrophage infiltration or activation can be useful in the prevention of development of chronic kidney disease following ischaemic injury.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.