Scaling large-area solar cells is in high demand for the commercialization of perovskite solar cells (PSCs) with a high power-conversion efficiency (PCE).However, few roll-to-roll-compatible deposition methods for the formation of highly oriented uniform perovskite films are reported. Herein, a facile cold antisolvent bathing approach compatible with large-area fabrication is introduced. The wet precursor films are submerged in a cold antisolvent bath at 0 °C, and the retarded nucleation and growth kinetics allow highly oriented perovskite to be grown along the [110] and [220] directions, perpendicular to the substrate. The high degree of the preferred crystal orientation benefits the effective charge extraction and reduces the amount of inter-and intra-grain defects inside the perovskite films, improving the PCE from 16.48% (ambientbathed solar cell) to 18.50% (cold-bathed counterpart). The cold antisolvent bathing method is employed for the fabrication of large-area (8 × 10 cm 2 ) PSCs with uniform photovoltaic device parameters, thereby verifying the scale-up capability of the method.
Gallium oxide nanowires were synthesized via chemical vapor deposition of gallium/gallium oxide mixture and oxygen. The diameter of the nanowires is 30−80 nm with an average value of 50 nm. They consist of single-crystalline monoclinic crystal. While the nanowires grown without catalyst exhibit a significant planar defect, the nanowires grown with nickel catalytic nanopaticles are almost defect-free. The growth direction of the nanowires grown without the catalyst is uniformly [010]. In contrast, the nanowires grown with the catalyst have random growth direction. X-ray diffraction, Raman spectroscopy, and photoluminescence are well correlated with the structural characteristics of the nanowires. The result provides an evidence for the catalyst effect in controlling the structure of nanowires.
All‐inorganic cesium lead triiodide (CsPbI3) perovskite is considered a promising solution‐processable semiconductor for highly stable optoelectronic and photovoltaic applications. However, despite its excellent optoelectronic properties, the phase instability of CsPbI3 poses a critical hurdle for practical application. In this study, a novel stain‐mediated phase stabilization strategy is demonstrated to significantly enhance the phase stability of cubic α‐phase CsPbI3. Careful control of the degree of spatial confinement induced by anodized aluminum oxide (AAO) templates with varying pore sizes leads to effective manipulation of the phase stability of α‐CsPbI3. The Williamson–Hall method in conjunction with density functional theory calculations clearly confirms that the strain imposed on the perovskite lattice when confined in vertically aligned nanopores can alter the formation energy of the system, stabilizing α‐CsPbI3 at room temperature. Finally, the CsPbI3 grown inside nanoporous AAO templates exhibits exceptional phase stability over three months under ambient conditions, in which the resulting light‐emitting diode reveals a natural red color emission with very narrow bandwidth (full width at half maximum of 33 nm) at 702 nm. The universally applicable template‐based stabilization strategy can give in‐depth insights on the strain‐mediated phase transition mechanism in all‐inorganic perovskites.
Gallium nitride nanowires were synthesized on silicon substrates by chemical vapor deposition using the reaction of gallium and gallium nitride mixture with ammonia. Iron nanoparticles were used as catalysts. The diameter of nanowires is uniform as 25 nm and the lengths are 20–40 μm. The nanowires have single crystalline wurtzite structure with a few stacking faults. A careful examination into x-ray diffraction and Raman scattering data revealed that the separations of the neighboring lattice planes along the growth direction are shorter than those of bulk gallium nitride. The nanowires would experience biaxial compressive stresses in the inward radial direction and the induced tensile uniaxial stresses in the growth direction. The shifts of the band gap due to the stresses have been estimated using the experimental data, showing that the reduction of the band gap due to the tensile stresses can occur more significantly than the increase due to the compressive stresses. The temperature-dependent photoluminescence (PL) of the nanowires exhibit a strong broad band in the energy range of 2.9–3.6 eV. The PL could originate from the recombination of bound excitons. The strong room-temperature PL would be in line with the existence of strains inside the nanowires. The peak appears at the lower energy than that of the epilayer, which is consistent with the decrease of the band gap predicted from the x-ray diffraction and Raman data. The various strengths of stress may result in the widely distributed PL energy position.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.