Receptor-interacting protein kinase-3 (RIP3 or RIPK3) is a central protein in necroptosis, but posttranslational processes that regulate RIP3 activity and stability remain poorly understood. Here, we identify pellino E3 ubiquitin protein ligase 1 (PELI1) as an E3 ligase that targets RIP3 for proteasome-dependent degradation. Phosphorylation of RIP3 on T182 leads to interaction with the forkhead-associated (FHA) domain of PELI1 and PELI1-mediated K48-linked polyubiquitylation of RIP3 on K363. This same phosphorylation event is also important for RIP3 kinase activity; thus, PELI1 preferentially targets kinase-active RIP3 for degradation. PELI1-mediated RIP3 degradation effectively prevents cell death triggered by RIP3 hyperactivation. Importantly, upregulated RIP3 expression in keratinocytes from toxic epidermal necrolysis (TEN) patients is correlated with low expression of PELI1, suggesting that loss of PELI1 may play a role in the pathogenesis of TEN. We propose that PELI1 may function to control inadvertent activation of RIP3, thus preventing aberrant cell death and maintaining cellular homeostasis.
The translation of mammalian messenger RNAs (mRNAs) can be driven by either cap-binding proteins 80 and 20 (CBP80/20) or eukaryotic translation initiation factor (eIF)4E. Although CBP80/20-dependent translation (CT) is known to be coupled to an mRNA surveillance mechanism termed nonsense-mediated mRNA decay (NMD), its molecular mechanism and biological role remain obscure. Here, using a yeast two-hybrid screening system, we identify a stem-loop binding protein (SLBP) that binds to a stem-loop structure at the 3′-end of the replication-dependent histone mRNA as a CT initiation factor (CTIF)-interacting protein. SLBP preferentially associates with the CT complex of histone mRNAs, but not with the eIF4E-depedent translation (ET) complex. Several lines of evidence indicate that rapid degradation of histone mRNA on the inhibition of DNA replication largely takes place during CT and not ET, which has been previously unappreciated. Furthermore, the ratio of CBP80/20-bound histone mRNA to eIF4E-bound histone mRNA is larger than the ratio of CBP80/20-bound polyadenylated β-actin or eEF2 mRNA to eIF4E-bound polyadenylated β-actin or eEF2 mRNA, respectively. The collective findings suggest that mRNAs harboring a different 3′-end use a different mechanism of translation initiation, expanding the repertoire of CT as a step for determining the fate of histone mRNAs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.