In recent years, the advent of highly deformable and healable electronics is exciting and promising for nextgeneration electronic devices. In particular, self-healable triboelectric nanogenerators (SH-TENGs) serve as promising candidates based on the combination of the triboelectric effect, electrostatic induction, and self-healing action. However, the majority of SH-TENGs have been devised with weak polymeric networks that are healed with reversible supramolecular interactions or disulfides, thus resulting in poor mechanical properties and low resistance to creeping. To address this issue, we demonstrate the integration of mechanically strong and self-healable poly(hindered urea) (PHU) network in the fabrication of effective TENGs. The designed PHU network is flexible but shows greater mechanical property of tensile strength as high as 1.7 MPa at break. The network is capable of self-healing quickly and repeatedly as well as being reprocessable under mild conditions, enabling the recovery of triboelectric performances after the complete healing of the damaged surfaces. Furthermore, the interfacial-polarization-induced enhancement of dielectric constant endows our SH-TENG with the highest triboelectric output performance (169.9 V/cm 2 ) among the reported healable TENGs. This work presents an avenue to the development of mechanical energy-harvesting devices and self-powered sensors with excellent stretchability, high recoverability, and good mechanical strength.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.