We present and interpret Global Positioning System (GPS) measurements of crustal motions for the period 1988–1997 at 189 sites extending east‐west from the Caucasus mountains to the Adriatic Sea and north‐south from the southern edge of the Eurasian plate to the northern edge of the African plate. Sites on the northern Arabian platform move 18±2 mm/yr at N25°±5°W relative to Eurasia, less than the NUVEL‐1A circuit closure rate (25±1 mm/yr at N21°±7°W). Preliminary motion estimates (1994–1997) for stations located in Egypt on the northeastern part of Africa show northward motion at 5–6±2 mm/yr, also slower than NUVEL‐IA estimates (10±1 mm/yr at N2°±4°E). Eastern Turkey is characterized by distributed deformation, while central Turkey is characterized by coherent plate motion (internal deformation of <2 mm/yr) involving westward displacement and counterclockwise rotation of the Anatolian plate. The Anatolian plate is de‐coupled from Eurasia along the right‐lateral, strike‐slip North Anatolian fault (NAF). We derive a best fitting Euler vector for Anatolia‐Eurasia motion of 30.7°± 0.8°N, 32.6°± 0.4°E, 1.2°±0.1°/Myr. The Euler vector gives an upper bound for NAF slip rate of 24±1 mm/yr. We determine a preliminary GPS Arabia‐Anatolia Euler vector of 32.9°±1.2°N, 40.3°±1.1°E, 0.8°±0.2°/Myr and an upper bound on left‐lateral slip on the East Anatolian fault (EAF) of 9±1 mm/yr. The central and southern Aegean is characterized by coherent motion (internal deformation of <2 mm/yr) toward the SW at 30±1 mm/yr relative to Eurasia. Stations in the SE Aegean deviate significantly from the overall motion of the southern Aegean, showing increasing velocities toward the trench and reaching 10±1 mm/yr relative to the southern Aegean as a whole.
[1] We present a new kinematic and strain model of an area encompassing the Calabrian and Hellenic subduction zones, western Anatolia and the Balkans. Using Haines and Holt's (1993) method, we derive continuous velocity and strain rate fields by interpolating geodetic velocities, including recent GPS data in the Balkans. Relative motion between stable Eurasia and the western Aegean Sea is gradually accommodated by distributed N-S extension from Southern Balkans to the Eastern Corinth Gulf, so that the westward propagation of the North Anatolian Fault (NAF) throughout continental Greece or Peloponnesus is not required. We thus propose that the NAF terminates in north Aegean and that N-S extension localized in the Corinth Gulf and distributed in Southern Balkans is due to the retreat of the Hellenic slab. The motion of the Hyblean plateau, Apulia Peninsula, south Adriatic Sea, Ionian Basin and Sirte plain can be minimized by a single rigid rotation around a pole located in the Sirte plain, compatible with the opening the Pelagian rifts (2-2.5 mm/yr) and seismotectonics in Libya. We interpret the trenchward ultraslow motion of the Calabrian arc (2-2.5 mm/yr) as pure collapse, the Calabrian subduction being now inactive. In the absolute plate motion reference frame, our modeled velocity field depicts two toroïdal crustal patterns located at both ends of the Hellenic subduction zone, clockwise in NW Greece and counter-clockwise in western Anatolia. We suggest the NW Greece toroïdal pattern is the surface expression of a slab tear and consequent toroïdal asthenospheric flow.
We present a new GPS velocity field covering the peri‐Adriatic tectonically active belts and the entire Balkan Peninsula. From the velocities, we calculate consistent strain rate and interpolated velocity fields. Significant features of the crustal deformation include (1) the eastward motion of the northern part of the Eastern Alps together with part the Alpine foreland and Bohemian Massif toward the Pannonian Basin, (2) shortening across the Dinarides, (3) a clockwise rotation of the Albanides‐Hellenides, and (4) a southward motion south of 44°N of the inner Balkan lithosphere between the rigid Apulia and Black Sea, toward the Aegean domain. Using this new velocity field, we derive the strain rate tensor to analyze the regional style of the deformation. Then, we devise a simple test based on the momentum balance equation, to investigate the role of horizontal gradients of gravitational potential energy in driving the deformation in the peri‐Adriatic tectonically active mountain belts: the Eastern Alps, the Dinarides, the Albanides, and the Apennines. We show that the strain rate fields observed in the Apennines and Albanides are consistent with a fluid, with viscosity η ∼ 3×1021 Pa s, deforming in response to horizontal gradients of gravitational potential energy. Conversely, both the Dinarides and Eastern Alps are probably deforming in response to the North and North‐East oriented motion of the Adria‐Apulia indenter, respectively, and as a consequence of horizontal lithospheric heterogeneity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.