Balanced chromosome rearrangements (BCRs) can cause genetic diseases by disrupting or inactivating specific genes, and the characterization of breakpoints in disease-associated BCRs has been instrumental in the molecular elucidation of a wide variety of genetic disorders. However, mapping chromosome breakpoints using traditional methods, such as in situ hybridization with fluorescent dye-labeled bacterial artificial chromosome clones (BAC-FISH), is rather laborious and time-consuming. In addition, the resolution of BAC-FISH is often insufficient to unequivocally identify the disrupted gene. To overcome these limitations, we have performed shotgun sequencing of flow-sorted derivative chromosomes using “next-generation” (Illumina/Solexa) multiplex sequencing-by-synthesis technology. As shown here for three different disease-associated BCRs, the coverage attained by this platform is sufficient to bridge the breakpoints by PCR amplification, and this procedure allows the determination of their exact nucleotide positions within a few weeks. Its implementation will greatly facilitate large-scale breakpoint mapping and gene finding in patients with disease-associated balanced translocations.
We report on six additional patients with macrocephaly-cutis marmorata telangiectatica congenita (M-CMTC; MIM 602501) and review the literature. This syndrome is a multiple congenital anomalies/mental retardation and overgrowth disorder comprising macrocephaly, cutis marmorata, vascular marks of lip and/or philtrum, syndactyly, hemihypertrophy, CNS anomalies, and developmental delay. Based on the findings in our 6 patients and on 69 patients previously reported we listed the very frequent (observed in >75%), frequent (25-75%), and less frequent (>25%) components of the syndrome.
The 22q11.2 deletion syndrome is commonly diagnosed using fluorescence in situ hybridization (FISH) with commercial probes. The chromosomal breakpoints and deletion size are subsequently characterized by short tandem repeat (STR) segregation tests or by further FISH probes. Recently, a multiplex ligation-dependent probe amplification (MLPA) single tube assay was developed to detect deletions of the 22q11.2 region and other chromosomal regions associated with DiGeorge/velocardiofacial syndrome. We have compared the results of these three techniques in a group of 30 patients affected with 22q11.2 deletion syndrome. MLPA correctly called all patients who had been previously diagnosed by FISH. The MLPA results were concordant in all patients with the STR analysis in respect to deletion size. Furthermore, this novel technique resolved seven cases that were undetermined by STR analysis. These results confirm the efficiency of MLPA as a rapid, reliable, economical, high-throughput method for the diagnosis of 22q11.2 deletion syndrome.
Background: Individuals affected with DiGeorge and Velocardiofacial syndromes present with both phenotypic diversity and variable expressivity. The most frequent clinical features include conotruncal congenital heart defects, velopharyngeal insufficiency, hypocalcemia and a characteristic craniofacial dysmorphism. The etiology in most patients is a 3 Mb recurrent deletion in region 22q11.2. However, cases of infrequent deletions and duplications with different sizes and locations have also been reported, generally with a milder, slightly different phenotype for duplications but with no clear genotype-phenotype correlation to date.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.