The H I Parkes All-Sky Survey (HIPASS) catalogue forms the largest uniform catalogue of H I sources compiled to date, with 4315 sources identified purely by their H I content. The catalogue data comprise the southern region δ < + 2 • of HIPASS, the first blind H I survey to cover the entire southern sky. The rms noise for this survey is 13 mJy beam −1 and the velocity range is −1280 to 12 700 km s −1 . Data search, verification and parametrization methods are discussed along with a description of measured quantities. Full catalogue data are made available to the astronomical community including positions, velocities, velocity widths, integrated fluxes and peak flux densities. Also available are on-sky moment maps, position-velocity moment maps and spectra of catalogue sources. A number of local large-scale features are observed in the space distribution of sources, including the super-Galactic plane and the Local Void. Notably, large-scale structure is seen at low Galactic latitudes, a region normally obscured at optical wavelengths.
Aims. Pointed observations with XMM-Newton provide the basis for creating catalogues of X-ray sources detected serendipitously in each field. This paper describes the creation and characteristics of the 2XMM catalogue. Methods. The 2XMM catalogue has been compiled from a new processing of the XMM-Newton EPIC camera data. The main features of the processing pipeline are described in detail. Results. The catalogue, the largest ever made at X-ray wavelengths, contains 246 897 detections drawn from 3491 public XMM-Newton observations over a 7-year interval, which relate to 191 870 unique sources. The catalogue fields cover a sky area of more than 500 deg 2 . The non-overlapping sky area is ∼360 deg 2 (∼1% of the sky) as many regions of the sky are observed more than once by XMM-Newton. The catalogue probes a large sky area at the flux limit where the bulk of the objects that contribute to the X-ray background lie and provides a major resource for generating large, well-defined X-ray selected source samples, studying the X-ray source population and identifying rare object types. The main characteristics of the catalogue are presented, including its photometric and astrometric properties
We present the HIPASS Bright Galaxy Catalog (BGC), which contains the 1000 H i brightest galaxies in the southern sky as obtained from the H i Parkes All-Sky Survey (HIPASS). The selection of the brightest sources is based on their H i peak flux density (S peak k116 mJy) as measured from the spatially integrated HIPASS spectrum. The derived H i masses range from $10 7 to 4 ; 10 10 M . While the BGC (z < 0:03) is complete in S peak , only a subset of $500 sources can be considered complete in integrated H i flux density (F H i k 25 Jy km s À1 ). The HIPASS BGC contains a total of 158 new redshifts. These belong to 91 new sources for which no optical or infrared counterparts have previously been cataloged, an additional 51 galaxies for which no redshifts were previously known, and 16 galaxies for which the cataloged optical velocities disagree. Of the 91 newly cataloged BGC sources, only four are definite H i clouds: while three are likely Magellanic debris with velocities around 400 km s À1 , one is a tidal cloud associated with the NGC 2442 galaxy group. The remaining 87 new BGC sources, the majority of which lie in the zone of avoidance, appear to be galaxies. We identified optical counterparts to all but one of the 30 new galaxies at Galactic latitudes jbj > 10 . Therefore, the BGC yields no evidence for a population of ''free-floating'' intergalactic H i clouds without associated optical counterparts. HIPASS provides a clear view of the local large-scale structure. The dominant features in the sky distribution of the BGC are the Supergalactic Plane and the Local Void. In addition, one can clearly see the Centaurus Wall, which connects via the Hydra and Antlia Clusters to the Puppis Filament. Some previously hardly noticable galaxy groups stand out quite distinctly in the H i sky distribution. Several new structures, including some not behind the Milky Way, are seen for the first time.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.