On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ∼ 1.7 s with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2 at a luminosity distance of 40 − 8 + 8 Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 M ⊙ . An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ∼ 40 Mpc ) less than 11 hours after the merger by the One-Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ∼10 days. Following early non-detections, X-ray and radio emission were discovered at the transient’s position ∼ 9 and ∼ 16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC 4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta.
How black holes accrete surrounding matter is a fundamental yet unsolved question in astrophysics. It is generally believed that matter is absorbed into black holes via accretion disks, the state of which depends primarily on the mass-accretion rate. When this rate approaches the critical rate (the Eddington limit), thermal instability is supposed to occur in the inner disk, causing repetitive patterns of large-amplitude X-ray variability (oscillations) on timescales of minutes to hours. In fact, such oscillations have been observed only in sources with a high mass-accretion rate, such as GRS 1915+105 (refs 2, 3). These large-amplitude, relatively slow timescale, phenomena are thought to have physical origins distinct from those of X-ray or optical variations with small amplitudes and fast timescales (less than about 10 seconds) often observed in other black-hole binaries-for example, XTE J1118+480 (ref. 4) and GX 339-4 (ref. 5). Here we report an extensive multi-colour optical photometric data set of V404 Cygni, an X-ray transient source containing a black hole of nine solar masses (and a companion star) at a distance of 2.4 kiloparsecs (ref. 8). Our data show that optical oscillations on timescales of 100 seconds to 2.5 hours can occur at mass-accretion rates more than ten times lower than previously thought. This suggests that the accretion rate is not the critical parameter for inducing inner-disk instabilities. Instead, we propose that a long orbital period is a key condition for these large-amplitude oscillations, because the outer part of the large disk in binaries with long orbital periods will have surface densities too low to maintain sustained mass accretion to the inner part of the disk. The lack of sustained accretion--not the actual rate--would then be the critical factor causing large-amplitude oscillations in long-period systems.
We investigate the prompt emission and the afterglow properties of short-duration gamma-ray burst (sGRB) 130603B and another eight sGRB events during 2012–2015, observed by several multiwavelength facilities including the Gran Canarias Telescope 10.4 m telescope. Prompt emission high energy data of the events were obtained by INTEGRAL-SPI-ACS, Swift-BAT, and Fermi-GBM satellites. The prompt emission data by INTEGRAL in the energy range of 0.1–10 MeV for sGRB 130603B, sGRB 140606A, sGRB 140930B, sGRB 141212A, and sGRB 151228A do not show any signature of the extended emission or precursor activity and their spectral and temporal properties are similar to those seen in case of other short bursts. For sGRB 130603B, our new afterglow photometric data constrain the pre-jet-break temporal decay due to denser temporal coverage. For sGRB 130603B, the afterglow light curve, containing both our new and previously published photometric data is broadly consistent with the ISM afterglow model. Modeling of the host galaxies of sGRB 130603B and sGRB 141212A using the LePHARE software supports a scenario in which the environment of the burst is undergoing moderate star formation activity. From the inclusion of our late-time data for eight other sGRBs we are able to: place tight constraints on the non-detection of the afterglow, host galaxy, or any underlying ‘kilonova’ emission. Our late-time afterglow observations of the sGRB 170817A/GW170817 are also discussed and compared with the sub-set of sGRBs.
Aims. We studied the rotational properties of the dwarf planet Makemake. Methods. The photometric observations were carried out at different telescopes between 2006 and 2017. Most of the measurements were acquired in BVRI broad-band filters of a standard Johnson-Cousins photometric system. Results. We found that Makemake rotates more slowly than was previously reported. A possible lightcurve asymmetry suggests a double-peaked period of P = 22.8266±0.0001 h. A small peak-to-peak lightcurve amplitude in R-filter A = 0.032±0.005 mag implies an almost spherical shape or near pole-on orientation. We also measured BVRI colours and the R-filter phase-angle slope and revised the absolute magnitudes. The absolute magnitude of Makemake has remained unchanged since its discovery in 2005. No direct evidence of a newly discovered satellite was found in our photometric data; however, we discuss the possible existence of another larger satellite.
Context. The near-Earth asteroid 3200 Phaethon (1983 TB) is an attractive object not only from a scientific viewpoint but also because of JAXA's DESTINY +⋆⋆ target. The rotational lightcurve and spin properties were investigated based on the data obtained in the ground-based observation campaign of Phaethon.Aims. We aim to refine the lightcurves and shape model of Phaethon using all available lightcurve datasets obtained via optical observation, as well as our time-series observation data from the 2017 apparition.Methods. Using eight 1-2-m telescopes and an optical imager, we acquired the optical lightcurves and derived the spin parameters of Phaethon. We applied the lightcurve inversion method and SAGE (Shaping Asteroids with Genetic Evolution) algorithm to deduce the convex and nonconvex shape model and pole orientations.Results. We analysed the optical lightcurve of Phaethon and derived a synodic and a sidereal rotational periods of 3.6039 h, with an axis ratio of a/b = 1.07. The ecliptic longitude (λ p ) and latitude (β p ) of the pole orientation were determined as (308, -52) and (322, -40) via two independent methods. A non-convex model from the SAGE method, which exhibits a concavity feature, is also presented.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.