We present a search for a Higgs boson decaying to two W bosons in pp collisions at √ s = 1.96TeV center-of-mass energy. The data sample corresponds to an integrated luminosity of 3.0 fb −1 collected with the CDF II detector. We find no evidence for production of a Higgs boson with mass between 110 and 200 GeV/c 2 , and determine upper limits on the production cross section. For the mass of 160 GeV/c 2 , where the analysis is most sensitive, the observed (expected) limit is 0.7 pb (0.9 pb) at 95% Bayesian credibility level which is 1.7 (2.2) times the standard model cross section.
We measure the time dependence of the ratio of decay rates for the rare decay D{0}-->K{+}pi{-} to the Cabibbo-favored decay D{0}-->K{-}pi;{+}. A signal of 12.7x10;{3} D{0}-->K{+}pi{-} decays was obtained using the Collider Detector at Fermilab II detector at the Fermilab Tevatron with an integrated luminosity of 1.5 fb;{-1}. We measure the D0-D[over ]{0} mixing parameters (R_{D},y{'},x{'2}), and find that the data are inconsistent with the no-mixing hypothesis with a probability equivalent to 3.8 Gaussian standard deviations.
We have measured the W -boson mass MW using data corresponding to 2.2 fb −1 of integrated luminosity collected in pp collisions at √ s = 1.96 TeV with the CDF II detector at the Fermilab Tevatron collider. Samples consisting of 470 126 W → eν candidates and 624 708 W → µν candidates yield the measurement MW = 80 387 ± 12stat ± 15syst = 80 387 ± 19 MeV/c 2 . This is the most precise measurement of the W -boson mass to date and significantly exceeds the precision of all previous measurements combined. PACS numbers: 13.38.Be, 14.70.Fm, 12.15.Ji, 13.85.Qk The mass of the W boson, M W , is an important parameter of the standard model (SM) of particle physics. Precise measurements of M W and of other electroweak observables significantly constrain the mass of the as-yet * Deceased † With visitors from
We report on a search for new particles in the diphoton channel using a data sample of pp collisions at √ s = 1.96 TeV collected by the CDF II detector at the Fermilab Tevatron, with an integrated luminosity of 5.4 fb −1 . The diphoton invariant mass spectrum of the data agrees well with the standard model expectation. We set upper limits on the production cross section times branching ratio for the Randall-Sundrum graviton, as a function of diphoton mass. We subsequently derive lower limits on the graviton mass of 459 GeV/c 2 and 963 GeV/c 2 , at the 95% confidence level, for coupling parameters (k/M P l ) of 0.01 and 0.1 respectively.
We present new measurements of the inclusive forward-backward tt production asymmetry, AFB, and its dependence on several properties of the tt system. The measurements are performed with the full Tevatron data set recorded with the CDF II detector during pp collisions at √ s = 1.96 TeV, corresponding to an integrated luminosity of 9.4 fb −1 . We measure the asymmetry using the rapidity difference ∆y = yt − yt. Parton-level results are derived, yielding an inclusive asymmetry of 0.164 ± 0.047 (stat + syst). We establish an approximately linear dependence of AFB on the top-quark pair mass M tt and the rapidity difference |∆y| at detector and parton levels. Assuming the standard model, the probabilities to observe the measured values or larger for the detector-level dependencies are 7.4 × 10 −3 and 2.2 × 10 −3 for M tt and |∆y| respectively. Lastly, we study the dependence of the asymmetry on the transverse momentum of the tt system at the detector level. These results are consistent with previous lower-precision measurements and provide additional quantification of the functional dependencies of the asymmetry.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.