Topological Weyl semimetal (TWS), a new state of quantum matter, has sparked enormous research interest recently. Possessing unique Weyl fermions in the bulk and Fermi arcs on the surface, TWSs offer a rare platform for realizing many exotic physical phenomena. TWSs can be classified into type-I that respect Lorentz symmetry and type-II that do not. Here, we directly visualize the electronic structure of MoTe2, a recently proposed type-II TWS. Using angle-resolved photoemission spectroscopy (ARPES), we unravel the unique surface Fermi arcs, in good agreement with our ab initio calculations that have nontrivial topological nature. Our work not only leads to new understandings of the unusual properties discovered in this family of compounds, but also allows for the further exploration of exotic properties and practical applications of type-II TWSs, as well as the interplay between superconductivity (MoTe2 was discovered to be superconducting recently) and their topological order.
A comprehensive mapping of the spin polarization of the electronic bands in ferroelectric α-GeTe(111) films has been performed using a time-of-flight momentum microscope equipped with an imaging spin filter that enables a simultaneous measurement of more than 10.000 data points (voxels). A Rashba type splitting of both surface and bulk bands with opposite spin helicity of the inner and outer Rashba bands is found revealing a complex spin texture at the Fermi energy. The switchable inner electric field of GeTe implies new functionalities for spintronic devices. The strong coupling of electron momentum and spin in low-dimensional structures allows an electrically controlled spin manipulation in spintronic devices [1-4], e.g. via the Rashba effect [5]. The Rashba effect has first been experimentally demonstrated in semiconductor heterostructures, where an electrical field perpendicular to the layered structure, i.e. perpendicular to the electron momentum, determines the electron spin orientation relative to its momentum [6-8]. An asymmetric interface structure causes the necessary inversion symmetry breaking and accounts for the special spin-splitting of electron states, the Rashba effect [5], the size of which can be tuned by the strength of the electrical field. For most semiconducting materials the Rashba effect causes only a quite small splitting of the order of 10 −2 ˚ A −1 and thus requires experiments at very low temperatures [9-11] and also implies large lateral dimensions for potential spintronic applications. A considerably larger splitting has been predicted theoretically [12] and was recently found experimentally for the surface states of GeTe(111) [13, 14]. GeTe is a ferroelectric semiconductor with a Curie temperature of 700 K. Thus, besides the interface induced Rashba splitting, the ferroelectric properties also imply a broken inversion symmetry within the bulk and thus would allow for the electrical tuning of the bulk Rashba splitting via switching the ferroelectric polarization [12, 15, 16]. This effect is of great interest for non-volatile spin orbitronics [10]. For GeTe a bulk Rashba splitting of 0.19Å19Å −1 has been predicted theoretically [12]. Experimentally, bulk-Rashba bands are rare and have only been found in the layered polar semiconductors BiTeCl and BiTeI [17-20] that, however, are not switchable. A characterization of the ferroelectric properties and a measurement of the spin polarization of the surface states of GeTe(111) at selected k-points has been performed previously by force microscopy [21, 22] and spin-resolved angular resolved photoemission spectroscopy, respectively [13]. A recent experimental and theoretical study revealed that at the Fermi level the hybridization of surface and bulk states causes surface-bulk resonant states resulting in unconventional spin topologies with chiral symmetry [14]. Here, we demonstrate the spin structure of surface and bulk bands of the GeTe(111) surface using the novel pho-toemission technique of spin-resolved time-of-flight momentum microsco...
Transition-metal dichalcogenides (TMDs) are renowned for their rich and varied bulk properties, while their single-layer variants have become one of the most prominent examples of two-dimensional materials beyond graphene. Their disparate ground states largely depend on transition metal d-electron-derived electronic states, on which the vast majority of attention has been concentrated to date. Here, we focus on the chalcogen-derived states. From density-functional theory calculations together with spin-and angle-resolved photoemission, we find that these generically host a coexistence of type-I and type-II three-dimensional bulk Dirac fermions as well as ladders of topological surface states and surface resonances. We demonstrate how these naturally arise within a single p-orbital manifold as a general consequence of a trigonal crystal field, and as such can be expected across a large number of compounds. Already, we demonstrate their existence in six separate TMDs, opening routes to tune, and ultimately exploit, their topological physics.The classification of electronic structures based on their topological properties has opened powerful routes for understanding solid state materials. 1 The nowfamiliar Z 2 topological insulators are most renowned for their spin-polarised Dirac surface states residing in inverted bulk band gaps. 1 In systems with rotational invariance, a band inversion on the rotation axis can generate protected Dirac cones with a point-like Fermi surface of the bulk electronic structure. 2-8 If either inversion or time-reversal symmetry is broken, a bulk Dirac point can split into a pair of spin-polarised Weyl points. 9-15 Unlike for elementary particles, Lorentz-violating Weyl fermions can also exist in the solid state, manifested as a tilting of the Weyl cone. If this tilt is sufficiently large, so-called type-II Weyl points can occur, now formed at the touching of open electron and hole pockets. [15][16][17][18][19][20][21][22] Realising such phases in solid-state materials not only offers unique environments and opportunities for studying the fundamental properties of fermions, but also holds potential for applications exploiting their exotic surface excitations and bulk electric and thermal transport properties. [23][24][25][26][27] Consequently, there is an intense current effort focused on identifying compounds which host the requisite band inversions. In many cases, however, this arXiv:1702.08177v2 [cond-mat.mtrl-sci]
We report the detailed electronic structure of WTe2 by high resolution angle-resolved photoemission spectroscopy. We resolved a rather complicated Fermi surface of WTe2. Specifically, there are in total nine Fermi pockets, including one hole pocket at the Brillouin zone center Γ, and two hole pockets and two electron pockets on each side of Γ along the Γ-X direction. Remarkably, we have observed circular dichroism in our photoemission spectra, which suggests that the orbital angular momentum exhibits a rich texture at various sections of the Fermi surface. This is further confirmed by our density-functional-theory calculations, where the spin texture is qualitatively reproduced as the conjugate consequence of spin-orbital coupling. Since the spin texture would forbid backscatterings that are directly involved in the resistivity, our data suggest that the spin-orbit coupling and the related spin and orbital angular momentum textures may play an important role in the anomalously large magnetoresistance of WTe2. Furthermore, the large differences among spin textures calculated for magnetic fields along the in-plane and out-of-plane directions also provide a natural explanation of the large field-direction dependence on the magnetoresistance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.