Castration-recurrent prostate cancer (CRPC) is suspected to depend on androgen receptor (AR). The AF-1 region in the amino-terminal domain (NTD) of AR contains most, if not all, of the transcriptional activity. Here we identify EPI-001, a small molecule that blocked transactivation of the NTD and was specific for inhibition of AR without attenuating transcriptional activities of related steroid receptors. EPI-001 interacted with the AF-1 region, inhibited protein-protein interactions with AR, and reduced AR interaction with androgen-response elements on target genes. Importantly, EPI-001 blocked androgen-induced proliferation and caused cytoreduction of CRPC in xenografts dependent on AR for growth and survival without causing toxicity.
Hormone therapies for advanced prostate cancer target the androgen receptor (AR) ligand-binding domain (LBD), but these ultimately fail and the disease progresses to lethal castration-resistant prostate cancer (CRPC). The mechanisms that drive CRPC are incompletely understood, but may involve constitutively active AR splice variants that lack the LBD. The AR N-terminal domain (NTD) is essential for AR activity, but targeting this domain with small-molecule inhibitors is complicated by its intrinsic disorder. Here we investigated EPI-001, a small-molecule antagonist of AR NTD that inhibits protein-protein interactions necessary for AR transcriptional activity. We found that EPI analogs covalently bound the NTD to block transcriptional activity of AR and its splice variants and reduced the growth of CRPC xenografts. These findings suggest that the development of small-molecule inhibitors that bind covalently to intrinsically disordered proteins is a promising strategy for development of specific and effective anticancer agents.
Prostate cancer progression can be associated with androgen receptor (AR) mutations acquired following treatment with castration and/or an antiandrogen. Abiraterone, a rationally designed inhibitor of CYP17A1 recently approved for the treatment of docetaxel-treated castration-resistant prostate cancer (CRPC), is often effective, but requires coadministration with glucocorticoids to curtail side effects. Here, we hypothesized that progressive disease on abiraterone may occur secondary to glucocorticoid-induced activation of mutated AR. We found that prednisolone plasma levels in patients with CRPC were sufficiently high to activate mutant AR. Mineralocorticoid receptor antagonists, such as spironolactone and eplerenone that are used to treat side effects related to mineralocorticoid excess, can also bind to and activate signaling through wild-type or mutant AR. Abiraterone inhibited in vitro proliferation and AR-regulated gene expression of AR-positive prostate cancer cells, which could be explained by AR antagonism in addition to inhibition of steroidogenesis. In fact, activation of mutant AR by eplerenone was inhibited by MDV3100, bicalutamide, or greater concentrations of abiraterone. Therefore, an increase in abiraterone exposure could reverse resistance secondary to activation of AR by residual ligands or coadministered drugs. Together, our findings provide a strong rationale for clinical evaluation of combined CYP17A1 inhibition and AR antagonism. Cancer Res; 72(9); 2176-82. Ó2012 AACR.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.