The size of a planet is an observable property directly connected to the physics of its formation and evolution. We used precise radius measurements from the California-Kepler Survey (CKS) to study the size distribution of 2025 Kepler planets in fine detail. We detect a factor of ≥2 deficit in the occurrence rate distribution at 1.5-2.0 R ⊕ . This gap splits the population of close-in (P < 100 d) small planets into two size regimes: R P < 1.5 R ⊕ and R P = 2.0-3.0 R ⊕ , with few planets in between. Planets in these two regimes have nearly the same intrinsic frequency based on occurrence measurements that account for planet detection efficiencies. The paucity of planets between 1.5 and 2.0 R ⊕ supports the emerging picture that close-in planets smaller than Neptune are composed of rocky cores measuring 1.5 R ⊕ or smaller with varying amounts of low-density gas that determine their total sizes.
A key legacy of the recently launched TESS mission will be to provide the astronomical community with many of the best transiting exoplanet targets for atmospheric characterization. However, time is of the essence to take full advantage of this opportunity. JWST, although delayed, will still complete its nominal five year mission on a timeline that motivates rapid identification, confirmation, and mass measurement of the top atmospheric characterization targets from TESS. Beyond JWST, future dedicated missions for atmospheric studies such as ARIEL require the discovery and confirmation of several hundred additional sub-Jovian size planets (R p < 10 R ⊕ ) orbiting bright stars, beyond those known today, to ensure a successful statistical census of exoplanet atmospheres. Ground-based ELTs will also contribute to surveying the atmospheres of the transiting planets discovered by TESS. Here we present a set of two straightforward analytic metrics, quantifying the expected signal-to-noise in transmission and thermal emission spectroscopy for a given planet, that will allow the top atmospheric characterization targets to be readily identified among the TESS planet candidates. Targets that meet our proposed threshold values for these metrics would be encouraged for rapid follow-up and confirmation via radial velocity mass measurements. Based on the catalog of simulated TESS detections by Sullivan et al. (2015), we determine appropriate cutoff values of the metrics, such that the TESS mission will ultimately yield a sample of ∼ 300 high-quality atmospheric characterization targets across a range of planet size bins, extending down to Earth-size, potentially habitable worlds.
Ever since the discovery of the first exoplanet, astronomers have made steady progress towards finding and probing planets in the habitable zone of their host stars, where the conditions could be right for liquid water to form and life to sprawl. Results from the Kepler mission indicate that the occurrence rate of habitable-zone Earths and super-Earths may be as high as 5-20%. Despite this abundance, probing the conditions and atmospheric properties on any of these habitable-zone planets is extremely difficult and has remained elusive to date. Here, we report the detection of water vapor and the likely presence of liquid water clouds in the atmosphere of the 8.6 M ⊕ habitable-zone planet K2-18b. With a 33 day orbit around a cool M3 dwarf, K2-18b receives virtually the same amount of total radiation from its host star (1441 ± 80 W/m 2 ) as the Earth receives from the Sun (1370 W/m 2 ), making it a good candidate to host liquid water clouds. In this study we observed eight transits using HST/WFC3 in order to achieve the necessary sensitivity to detect water vapor. While the thick gaseous envelope of K2-18b means that it is not a true Earth analogue, our observations demonstrate that low-mass habitable-zone planets with the right conditions for liquid water are accessible with state-of-the-art telescopes.
The California-Kepler Survey (CKS) is an observational program developed to improve our knowledge of the properties of stars found to host transiting planets by NASA's Kepler Mission. The improvement stems from new high-resolution optical spectra obtained using HIRES at the W. M. Keck Observatory. The CKS stellar sample comprises 1305 stars classified as Kepler objects of interest, hosting a total of 2075 transiting planets. The primary sample is magnitude-limited ( < Kp 14.2) and contains 960 stars with 1385 planets. The sample was extended to include some fainter stars that host multiple planets, ultra-short period planets, or habitable zone planets. The spectroscopic parameters were determined with two different codes, one based on template matching and the other on direct spectral synthesis using radiative transfer. We demonstrate a precision of 60K in T eff , 0.10dex in g log , 0.04dex in [ ] Fe H , and 1.0 -km s 1 in V i sin . In this paper, we describe the CKS project and present a uniform catalog of spectroscopic parameters. Subsequent papers in this series present catalogs of derived stellar properties such as mass, radius, and age; revised planet properties; and statistical explorations of the ensemble. CKS is the largest survey to determine the properties of Kepler stars using a uniform set of high-resolution, high signal-tonoise ratio spectra. The HIRES spectra are available to the community for independent analyses.
18] NASA Hubble FellowWith no analogues in the Solar System, the discovery of thousands of exoplanets with masses and radii intermediate between Earth and Neptune was one of the big surprises of exoplanet science. These super-Earths and sub-Neptunes likely represent the most common outcome of planet formation 1,2 . Mass and radius measurements indicate a diversity in bulk composition much wider than for gas giants 3 ; however, direct spectroscopic detections of molecular absorption and constraints on the gas mixing ratios have largely remained limited to planets more massive than Neptune 4-6 . Here, we analyze a combined Hubble/Spitzer Space Telescope dataset of 12 transits and 20 eclipses of the sub-Neptune GJ 3470 b, whose mass of 12.6 M⊕ places it near the half-way point between previously studied exo-Neptunes (22-23 M⊕) 5-7 and exoplanets known to have rocky densities (7 M⊕) 8 . Obtained over many years, our data set provides a robust detection of water absorption (>5σ) and a thermal emission detection from the lowest irradiated planet to date. We reveal a low-metallicity, hydrogendominated atmosphere similar to a gas giant, but strongly depleted in methane gas. The low, near-solar metallicity (O/H=0.2-18) sets important constraints on the potential planet formation processes at low masses as well as the subsequent accretion of solids. The low methane abundance indicates that methane is destroyed much more efficiently than previously predicted, suggesting that the CH4/CO transition curve has to be revisited for close-in planets. Finally, we also find a sharp drop in the cloud opacity at 2-3 µm characteristic of Mie scattering, which enables narrow constraints on the cloud particle size and makes GJ 3470b a keystone target for mid-IR characterization with JWST.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.