I. M. 1997. Hydrogen peroxideand glutathione-associated mechanisms of acclimatory stress tolerance and signalling. -Physiol. Plant. 100: 241-254.Plants adapt to environmental stresses through specific genetic responses. The molecular mechanisms associated with signal transduction, leading to changes in gene expression early in the stress response, are largely unknown. It is clear, however, that gene expression associated with acclimatory responses is sensitive to the redox state of the cell. Of the many components which contribute to the redox balance of the cell, two factors have been shown to be crucial in mediating stress responses. Thiol/disulphide exchange reactions, particularly involving the glutathione pool and the generation of the oxidant H2O2, are central components of signal transduction in both environmental and biotic stresses. These molecules are multifunctional triggers, modulating metabolism and gene expression. Both are able to cross biological membranes and diffuse or be transported long distances from their sites of origin. Glutathione and H2O2 may act alone or in unison, in intracellular and systemic signalling systems, to achieve acclimation and tolerance to biotic and abiotic stresses.
Plants adapt to environmental stresses through specific genetic responses. The molecular mechanisms associated with signal transduction, leading to changes in gene expression early in the stress response, are largely unknown. It is clear, however, that gene expression associated with acclimatory responses is sensitive to the redox state of the cell. Of the many components which contribute to the redox balance of the cell, two factors have been shown to be crucial in mediating stress responses. Thiol/disulphide exchange reactions, particularly involving the glutathione pool and the generation of the oxidant H2O2, are central components of signal transduction in both environmental and biotic stresses. These molecules are multifunctional triggers, modulating metabolism and gene expression. Both are able to cross biological membranes and diffuse or be transported long distances from their sites of origin. Glutathione and H2O2 may act alone or in unison, in intracellular and systemic signalling systems, to achieve acclimation and tolerance to biotic and abiotic stresses.
Vertebrate hearts depend on highly specialized cardiomyocytes that form the cardiac conduction system (CCS) to coordinate chamber contraction and drive blood efficiently and unidirectionally throughout the organism. Defects in this specialized wiring system can lead to syncope and sudden cardiac death. Thus, a greater understanding of cardiac conduction development may help to prevent these devastating clinical outcomes. Utilizing a cardiac-specific fluorescent calcium indicator zebrafish transgenic line, Tg(cmlc2:gCaMP)s878, that allows for in vivo optical mapping analysis in intact animals, we identified and analyzed four distinct stages of cardiac conduction development that correspond to cellular and anatomical changes of the developing heart. Additionally, we observed that epigenetic factors, such as hemodynamic flow and contraction, regulate the fast conduction network of this specialized electrical system. To identify novel regulators of the CCS, we designed and performed a new, physiology-based, forward genetic screen and identified for the first time, to our knowledge, 17 conduction-specific mutations. Positional cloning of hobgoblins634 revealed that tcf2, a homeobox transcription factor gene involved in mature onset diabetes of the young and familial glomerulocystic kidney disease, also regulates conduction between the atrium and the ventricle. The combination of the Tg(cmlc2:gCaMP)s878 line/in vivo optical mapping technique and characterization of cardiac conduction mutants provides a novel multidisciplinary approach to further understand the molecular determinants of the vertebrate CCS.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.