Purpose Studies demonstrating bacterial DNA and cultivable bacteria in urine samples have challenged the clinical dogma that urine is sterile. Furthermore, studies now indicate that dysbiosis of the urinary microbiome is associated with pathological conditions. We propose that the urinary microbiome may influence chronic inflammation observed in the prostate, leading to prostate cancer development and progression. Therefore, we profiled the urinary microbiome in men with positive vs negative biopsies for prostate cancer. Materials and Methods Urine was collected from men prior to biopsy for prostate cancer. DNA was extracted from urine pellet samples and subjected to bacterial 16S rDNA Illumina® sequencing and 16S rDNA quantitative polymerase chain reaction. We determined the association between bacterial species and the presence or absence of cancer, cancer grade, and type and degree of prostate inflammation. Results Urine samples revealed diverse bacterial populations. There were no significant differences in α or β diversity and no clear hierarchical clustering of benign or cancer samples. We identified a cluster of pro-inflammatory bacteria previously implicated in urogenital infections in a subset of samples. Many species, including known uropathogens, were significantly and differentially abundant among cancer and benign samples, in low vs higher grade cancers and in relation to prostate inflammation type and degree. Conclusions To our knowledge we report the most comprehensive study to date of the male urinary microbiome and its relationship to prostate cancer. Our results suggest a prevalence of pro-inflammatory bacteria and uropathogens in the urinary tract of men with prostate cancer.
Genetic instability, a hallmark feature of human cancers including prostatic adenocarcinomas, is considered a driver of metastasis. Somatic copy number alterations are found in most aggressive primary human prostate cancers, and the overall number of such changes is increased in metastases. Chromosome 10q23 deletions, encompassing PTEN, and amplification of 8q24, harboring MYC, are frequently observed, and the presence of both together portends a high risk of prostate cancer-specific mortality. In extant genetically engineered mouse prostate cancer models (GEMMs), isolated MYC overexpression or targeted Pten loss can each produce early prostate adenocarcinomas, but are not sufficient to induce genetic instability or metastases with high penetrance. While a previous study showed that combining Pten loss with focal MYC overexpression in a small fraction of prostatic epithelial cells exhibits cooperativity in GEMMs, additional targeted Tp53 disruption was required for formation of metastases. We hypothesized that driving combined MYC overexpression and Pten loss using recently characterized Hoxb13 transcriptional control elements that are active in prostate luminal epithelial cells would induce the development of genomic instability and aggressive disease with metastatic potential. Neoplastic lesions that developed with either MYC activation alone (Hoxb13-MYC) or Pten loss alone (Hoxb13-Cre|PtenFl/Fl) failed to progress beyond PIN and did not harbor genomic copy number alterations. By contrast, mice with both alterations (Hoxb13-MYC|Hoxb13-Cre|PtenFl/Fl or BMPC) developed lethal adenocarcinoma with distant metastases and widespread genome copy number alterations that were independent of forced disruption of Tp53 and telomere shortening. BMPC cancers lacked neuroendocrine or sarcomatoid differentiation, features uncommon in human disease but common in other models of prostate cancer that metastasize. These data show that combined MYC activation and Pten loss driven by the Hoxb13 regulatory locus synergize to induce genomic instability and aggressive prostate cancer that phenocopies the human disease at the histological and genomic levels.
Prostate cancer often manifests as morphologically distinct tumour foci and is frequently found adjacent to presumed precursor lesions such as high-grade prostatic intraepithelial neoplasia (HGPIN). While there is some evidence to suggest that these lesions can be related and exist on a pathological and morphological continuum, the precise clonal and temporal relationships between precursor lesions and invasive cancers within individual tumours remain undefined. Here, we used molecular genetic, cytogenetic, and histological analyses to delineate clonal, temporal, and spatial relationships between HGPIN and cancer lesions with distinct morphological and molecular features. First, while confirming the previous finding that a substantial fraction of HGPIN lesions associated with ERG-positive cancers share rearrangements and overexpression of ERG, we found that a significant subset of such HGPIN glands exhibit only partial positivity for ERG. This suggests that such ERG-positive HGPIN cells either rapidly invade to form adenocarcinoma or represent cancer cells that have partially invaded the ductal and acinar space in a retrograde manner. To clarify these possibilities, we used ERG expression status and TMPRSS2–ERG genomic breakpoints as markers of clonality, and PTEN deletion status to track temporal evolution of clonally related lesions. We confirmed that morphologically distinct HGPIN and nearby invasive cancer lesions are clonally related. Further, we found that a significant fraction of ERG-positive, PTEN-negative HGPIN and intraductal carcinoma (IDC-P) lesions are most likely clonally derived from adjacent PTEN-negative adenocarcinomas, indicating that such PTEN-negative HGPIN and IDC-P lesions arise from, rather than give rise to, the nearby invasive adenocarcinoma. These data suggest that invasive adenocarcinoma can morphologically mimic HGPIN through retrograde colonization of benign glands with cancer cells. Similar clonal relationships were also seen for intraductal carcinoma adjacent to invasive adenocarcinoma. These findings represent a potentially undervalued indicator of pre-existing invasive prostate cancer and have significant implications for prostate cancer diagnosis and risk stratification.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.