Accurate detection and classification of breast cancer is a critical task in medical imaging due to the complexity of breast tissues. Due to automatic feature extraction ability, deep learning methods have been successfully applied in different areas, especially in the field of medical imaging. In this study, a novel patchbased deep learning method called Pa-DBN-BC is proposed to detect and classify breast cancer on histopathology images using the Deep Belief Network (DBN). Features are extracted through an unsupervised pre-training and supervised fine-tuning phase. The network automatically extracts features from image patches. Logistic regression is used to classify the patches from histopathology images. The features extracted from the patches are fed to the model as input and the model presents the result as a probability matrix as either a positive sample (cancer) or a negative sample (background). The proposed model is trained and tested on the whole slide histopathology image dataset having images from four different data cohorts and achieved an accuracy of 86%. Consequently, the proposed method is better than the traditional ones, as it automatically learns the best possible features and experimental results show that the model outperformed the previously proposed deep learning methods.
Liver segmentation and recognition from computed tomography (CT) images is a warm topic in image processing which is helpful for doctors and practitioners. Currently, many deep learning methods are used for liver segmentation that takes a long time to train the model which makes this task challenging and limited to larger hardware resources. In this research, we proposed a very lightweight convolutional neural network (CNN) to extract the liver region from CT scan images. The suggested CNN algorithm consists of 3 convolutional and 2 fully connected layers, where softmax is used to discriminate the liver from background. Random Gaussian distribution is used for weight initialization which achieved a distance-preserving-embedding of the information. The proposed network is known as Ga-CNN (Gaussian-weight initialization of CNN). General experiments are performed on three benchmark datasets including MICCAI SLiver’07, 3Dircadb01, and LiTS17. Experimental results show that the proposed method performed well on each benchmark dataset.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.