The technological leap of smart technologies and the Internet of Things has advanced the conventional model of the electrical power and energy systems into a new digital era, widely known as the Smart Grid. The advent of Smart Grids provides multiple benefits, such as self-monitoring, self-healing and pervasive control. However, it also raises crucial cybersecurity and privacy concerns that can lead to devastating consequences, including cascading effects with other critical infrastructures or even fatal accidents. This paper introduces a novel architecture, which will increase the Smart Grid resiliency, taking full advantage of the Software-Defined Networking (SDN) technology. The proposed architecture called SDN-microSENSE architecture consists of three main tiers: (a) Risk assessment, (b) intrusion detection and correlation and (c) self-healing. The first tier is responsible for evaluating dynamically the risk level of each Smart Grid asset. The second tier undertakes to detect and correlate security events and, finally, the last tier mitigates the potential threats, ensuring in parallel the normal operation of the Smart Grid. It is noteworthy that all tiers of the SDN-microSENSE architecture interact with the SDN controller either for detecting or mitigating intrusions.
The novel network slicing paradigm represents an effective turning point to operate future wireless networks. Available networking and computational resources may be shared across different (instantiations of) services tailored onto specific vertical needs, envisioned as the main infrastructure tenants. While such customization enables meeting advanced key performance indicators (KPIs) introduced by upcoming 5G networks, advanced multi-tenancy approaches help to abate the cost of deploying and operating the network. However, the network slicing implementation requires a number of non-trivial practical considerations, including how resource sharing operations are actually implemented, how involved parties establish the corresponding agreement to instantiate, operate, and terminate such a sharing or the design of functional modules and interfaces supporting these operations. In this paper, we present a novel framework that unveils proper answers to the above design challenges. While existing initiatives are typically limited to single-domain and single-owner scenarios, our framework overcomes these limitations by enlarging the administrative scope of the network deployments fostering different providers to collaborate so as to facilitate a larger set of resources even spread across multiple domains. Numerical evaluations confirm the effectiveness and efficiency of the presented solution. INDEX TERMS 5G mobile communication, computer network management, network architecture, network function virtualization. VINCENZO SCIANCALEPORE (S'11-M'15) received the M.Sc. degree in telecommunications engineering and the M.Sc. degree in telematics engineering, in 2011 and 2012, respectively, and the double Ph.D. degrees, in 2015. He is currently a 5G Researcher with NEC Laboratories Europe GmbH, Heidelberg, focusing his activity on network virtualization and network slicing challenges. He was a recipient of the National Award for the best Ph.D. thesis in the areas of communication technologies (wireless and networking) issued by GTTI, in 2015. CHRISTIAN MANNWEILER received the M.Sc.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.