A cDNA for choriogenin H (Chg H; formerly high-molecular weight spawning female-specific substances, or H-SF), a precursor protein of the inner layer subunits of egg envelope (chorion) of the teleost fish, Oryzias latipes, was cloned and analyzed. The clone consisted of 1913 bp and contained an open reading frame encoding a signal peptide of 22 aa and Chg H protein of 569 aa. The Chg protein possessed three potential N-glycosylation sites and Pro-X-Y repeat sequences in the first two-fifths of the N terminus. There were amino acid sequence similarities between Chg H and a gene product expressed in the liver of female winter f lounder during vitellogenesis. Moreover, the amino acid sequence of Chg H is similar to that of ZP2 rather than ZP3 of zona pellucida of some mammals. Northern blot analysis indicated that gene expression for Chg H occurred only in the livers of spawning female fish and 17-estradiol-treated male fish, but not in the ovary of the spawning female fish. Gene expression for Chg H and Chg L (formerly low-molecular weight spawning female-specific substance, or L-SF) was induced and increased in parallel in the male fish liver after 17-estradiol treatment.
Two constituent proteases of the hatching enzyme of the medaka (Oryzias latipes), choriolysin H (HCE) and choriolysin L (LCE), belong to the astacin protease family. Astacin family proteases have a consensus amino acid sequence of HExxHxxGFxHExxRxDR motif in their active site region. In addition, HCE and LCE have a consensus sequence, SIMHYGR, in the downstream of the active site. Oligonucleotide primers were constructed that corresponded to the above-mentioned amino acid sequences and polymerase chain reactions were performed in zebrafish (Brachydanio rerio) and masu salmon (Oncorynchus masou) embryos. Using the amplified fragments as probes, two full-length cDNA were isolated from each cDNA library of the zebrafish and the masu salmon. The predicted amino acid sequences of the cDNA were similar to that of the medaka enzymes, more similar to HCE than to LCE, and it was conjectured that hatching enzymes of zebrafish and masu salmon also belonged to the astacin protease family. The final location of hatching gland cells in the three fish species: medaka, zebrafish and masu salmon, is different. The hatching gland cells of medaka are finally located in the epithelium of the pharyngeal cavity, those of zebrafish are in the epidermis of the yolk sac, and those of masu salmon are both in the epithelium of the pharyngeal cavity and the lateral epidermis of the head. However, in the present study, it was found that the hatching gland cells of zebrafish and masu salmon originated from the anterior end of the hypoblast, the Polster, as did those of medaka by in situ hybridization. It was clarified, therefore, that such difference in the final location of hatching gland cells among these species resulted from the difference in the migratory route of the hatching gland cells after the Polster region.
cDNA clones for L-SF, the precursor of a low-molecular-weight subunit (ZI-3) of the inner layer of the Oryzias latipes egg envelope were isolated from Lambda ZAP cDNA libraries constructed from the poly(A)+ RNA of the liver of spawning female fish and estrogen-treated male fish. Among them, a clone, L-SF41, is 1473 bp long and contains an open reading frame encoding a signal peptide of 19 amino acids and L-SF protein of 420 amino acids. L-SF protein seems to be glycosylated, judging from the result of the glycanase digestion. L-SF protein contains a domain similar to ZP-domains in ZP3 of some mammalian species. Northern blot analysis employing XhoI-SmaI fragments of the cloned cDNA as probes revealed that expression of the L-SF gene occurred exclusively in the livers of spawning female fish and estrogen-treated male fish and that there was no mRNA encoding L-SF in the ovary of the spawning female fish.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.