ObjectiveTo investigate serum antibody reactivity against a panel of post-translationally modified vimentin peptides (PTMPs) in patients with early inflammatory arthritis.MethodsA panel of PTMPs was developed. Microtitre plates were coated with peptides derived from vimentin that were identical in length and composition except at one amino acid that was changed to introduce one of three post-translational modifications (PTMs)—either a citrullinated, carbamylated or acetylated residue. Sera of 268 treatment-naive patients with early inflammatory arthritis and symptoms ≤3 months' duration were tested. Patients were assigned to one of three outcome categories at 18-month follow-up (rheumatoid arthritis (RA), persistent non-RA arthritis and resolving arthritis).ResultsAntibodies against citrullinated, carbamylated and acetylated vimentin peptides were detected in the sera of patients with early inflammatory arthritis. The proportion of patients seropositive for all antibody types was significantly higher in the RA group than in the other groups. Anti cyclic citrullinated peptide (CCP)-positive patients with RA had higher numbers of peptides recognised and higher levels of antibodies against those peptides, representing a distinct profile compared with the other groups.ConclusionsWe show for the first time that antibodies against acetylated vimentin are present in the sera of patients with early RA and confirm and extend previous observations regarding anticitrullinated and anticarbamylated antibodies.
Rheumatoid arthritis (RA) is a prototypical autoimmune disease that causes destructive tissue inflammation in joints and elsewhere. Clinical challenges in RA include the empirical selection of drugs to treat patients, inadequate responders with incomplete disease remission, and lack of a cure. We profiled the full spectrum of cells in inflamed synovium from patients with RA with the goal of deconstructing the cell states and pathways characterizing pathogenic heterogeneity in RA. Our multicenter consortium effort used multi-modal CITE-seq, RNA-seq, and histology of synovial tissue from 79 donors to build a >314,000 single-cell RA synovial cell atlas with 77 cell states from T, B/plasma, natural killer, myeloid, stromal, and endothelial cells. We stratified tissue samples into six distinct cell type abundance phenotypes (CTAPs) individually enriched for specific cell states. These CTAPs demonstrate the striking diversity of RA synovial inflammation, ranging from marked enrichment of T and B cells (CTAP-TB) to a congregation of specific myeloid, fibroblast, and endothelial cells largely lacking lymphocytes (CTAP-EFM). Disease-relevant cytokines, histology, and serology metrics are associated with certain CTAPs. This comprehensive RA synovial atlas and molecular, tissue-based CTAP stratification reveal new insights into RA pathology and heterogeneity, which could lead to novel targeted-treatment approaches in RA.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.