Antimalarial hit 1SR (TCMDC-134674) identified in a GlaxoSmithKline cell based screening campaign was evaluated for inhibitory activity against the digestive vacuole plasmepsins (Plm I, II, and IV). It was found to be a potent Plm IV inhibitor with no selectivity over Cathepsin D. A cocrystal structure of 1SR bound to Plm II was solved, providing structural insight for the design of more potent and selective analogues. Structure-guided optimization led to the identification of structurally simplified analogues 17 and 18 as low nanomolar inhibitors of both, plasmepsin Plm IV activity and P. falciparum growth in erythrocytes.
2-Aminoquinazolin-4(3H)-ones were identified as a novel class of malaria digestive vacuole plasmepsin inhibitors by using NMR-based fragment screening against Plm II. Initial fragment hit optimization led to a submicromolar inhibitor, which was cocrystallized with Plm II to produce an X-ray structure of the complex. The structure showed that 2-aminoquinazolin-4(3H)-ones bind to the open flap conformation of the enzyme and provided clues to target the flap pocket. Further improvement in potency was achieved via introduction of hydrophobic substituents occupying the flap pocket. Most of the 2-aminoquinazolin-4(3H)-one based inhibitors show a similar activity against digestive Plms I, II, and IV and >10-fold selectivity versus CatD, although varying the flap pocket substituent led to one Plm IV selective inhibitor. In cell-based assays, the compounds show growth inhibition of Plasmodium falciparum 3D7 with IC50 ∼ 1 μM. Together, these results suggest 2-aminoquinazolin-4(3H)-ones as perspective leads for future development of an antimalarial agent.
The influence of hydrophobicity on antibacterial activity versus the effect on the viability of mammalian cells for peptide/peptoid hybrids was examined for oligomers based on the cationic Lys‐like peptoid residue combined with each of 28 hydrophobic amino acids in an alternating sequence. Their relative hydrophobicity was correlated to activity against both Gram‐negative and Gram‐positive species, human red blood cells, and HepG2 cells. This identified hydrophobic side chains that confer potent antibacterial activity (e. g., MICs of 2–8 μg/mL against E. coli) and low toxicity toward mammalian cells (<10 % hemolysis at 400 μg/mL and IC50>800 μg/mL for HepG2 viability). Most peptidomimetics retained activity against drug‐resistant strains. These findings corroborate the hypothesis that for related peptidomimetics two hydrophobicity thresholds may be identified: i) it should exceed a certain level in order to confer antibacterial activity, and ii) there is an upper limit, beyond which cell selectivity is lost. It is envisioned that once identified for a given subclass of peptide‐like antibacterials such thresholds can guide further optimisation.
The hypothesis that sulfocoumarin acting as inhibitors of human carbonic anhydrase (CA, EC 4.2.1.1) cancer-associated isoforms hCA IX and-hCA XII is being able to also inhibit thioredoxin reductase was verified and confirmed. The dual targeting of two cancer cell defence mechanisms, i.e. hypoxia and oxidative stress, may both contribute to the observed antiproliferative profile of these compounds against many cancer cell lines. This unprecedented dual anticancer mechanism may lead to a new approach for designing innovative therapeutic agents.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.