In 2008 we published the first set of guidelines for standardizing research in autophagy. Since then, research on this topic has continued to accelerate, and many new scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Accordingly, it is important to update these guidelines for monitoring autophagy in different organisms. Various reviews have described the range of assays that have been used for this purpose. Nevertheless, there continues to be confusion regarding acceptable methods to measure autophagy, especially in multicellular eukaryotes. A key point that needs to be emphasized is that there is a difference between measurements that monitor the numbers or volume of autophagic elements (e.g., autophagosomes or autolysosomes) at any stage of the autophagic process vs. those that measure flux through the autophagy pathway (i.e., the complete process); thus, a block in macroautophagy that results in autophagosome accumulation needs to be differentiated from stimuli that result in increased autophagic activity, defined as increased autophagy induction coupled with increased delivery to, and degradation within, lysosomes (in most higher eukaryotes and some protists such as Dictyostelium) or the vacuole (in plants and fungi). In other words, it is especially important that investigators new to the field understand that the appearance of more autophagosomes does not necessarily equate with more autophagy. In fact, in many cases, autophagosomes accumulate because of a block in trafficking to lysosomes without a concomitant change in autophagosome biogenesis, whereas an increase in autolysosomes may reflect a reduction in degradative activity. Here, we present a set of guidelines for the selection and interpretation of methods for use by investigators who aim to examine macroautophagy and related processes, as well as for reviewers who need to provide realistic and reasonable critiques of papers that are focused on these processes. These guidelines are not meant to be a formulaic set of rules, because the appropriate assays depend in part on the question being asked and the system being used. In addition, we emphasize that no individual assay is guaranteed to be the most appropriate one in every situation, and we strongly recommend the use of multiple assays to monitor autophagy. In these guidelines, we consider these various methods of assessing autophagy and what information can, or cannot, be obtained from them. Finally, by discussing the merits and limits of particular autophagy assays, we hope to encourage technical innovation in the field
Hepatocellular carcinoma (HCC) is the third cause of cancer-related death worldwide. When these tumors are in advanced stages, few therapeutic options are available. Therefore, it is essential to search for new treatments to fight this disease. In this study, we investigated the effects of cannabinoids -a novel family of potential anticancer agents -on the growth of HCC. We found that D 9 -tetrahydrocannabinol (D 9 -THC, the main active component of Cannabis sativa) and JWH-015 (a cannabinoid receptor 2 (CB 2 ) cannabinoid receptor-selective agonist) reduced the viability of the human HCC cell lines HepG2 (human hepatocellular liver carcinoma cell line) and HuH-7 (hepatocellular carcinoma cells), an effect that relied on the stimulation of CB 2 receptor. We also found that D 9 -THC-and JWH-015-induced autophagy relies on tribbles homolog 3 (TRB3) upregulation, and subsequent inhibition of the serine-threonine kinase Akt/mammalian target of rapamycin C1 axis and adenosine monophosphate-activated kinase (AMPK) stimulation. Pharmacological and genetic inhibition of AMPK upstream kinases supported that calmodulin-activated kinase kinase b was responsible for cannabinoid-induced AMPK activation and autophagy. In vivo studies revealed that D 9 -THC and JWH-015 reduced the growth of HCC subcutaneous xenografts, an effect that was not evident when autophagy was genetically of pharmacologically inhibited in those tumors. Moreover, cannabinoids were also able to inhibit tumor growth and ascites in an orthotopic model of HCC xenograft. Our findings may contribute to the design of new therapeutic strategies for the management of HCC. Hepatocellular carcinoma (HCC) is one of the most common solid tumors and the third leading cause of cancer-related death worldwide. 1 Its prognosis remains reserved, with a 5-year survival rate of o5%. 2 It is the most common cause of death in patients with cirrhosis 3 and, according to the World Health Organization, the incidence of HCC is expected to increase until 2030. The overall survival of patients with HCC has not significantly improved in the past two decades. Current treatments are only applicable at early stages of tumor development and include tumor resection, liver transplantation, chemoembolization and sorafenib administration. 4 However, approximately half of the patients suffer tumor recurrence. The most important mechanism of liver cancer progression is cell proliferation. Although in recent years several clinical trials have tested the efficacy of agents that selectively target important signaling pathways involved in the control of this process, no relevant improvement in the prognostic/survival of patients with HCC has been achieved so far, 5 and, therefore, it is necessary to identify novel therapeutic strategies for the management of HCC.Cannabinoids are lipid mediators originally isolated from the hemp plant Cannabis sativa that produce their effects by activating primarily two G-protein-coupled receptors: cannabinoid receptor 1 (CB 1 ), which is highly abundant in the b...
Capsaicin, the pungent ingredient of hot chilli pepper, has been recently shown to induce apoptosis in several cell lines through a not well known mechanism. Here, we investigated the role of the vanilloid capsaicin in the death regulation of the human cancer androgen-resistant cell line PC-3. Capsaicin inhibited the growth of PC-3 with an IC(50) of 20 microM cells and induced cell apoptosis, as assessed by flow cytometry and nuclei staining with DAPI. Capsaicin induced apoptosis in prostate cells by a mechanism involving reactive oxygen species generation, dissipation of the mitochondrial inner transmembrane potential (DeltaPsi(m)) and activation of caspase 3. Capsaicin-induced apoptosis was not reduced by the antagonist capsazepine in a dose range from 0.1 microM to 20 microM, suggesting a receptor-independent mechanism. To study the in vivo effects of capsaicinoids, PC-3 cells were grown as xenografts in nude mice. Subcutaneous injection of either capsaicin or capsazepine (5 mg/kg body weight) in nude mice suppressed PC-3 tumor growth in all tumors investigated and induced apoptosis of tumor cells. Our data show a role for capsaicin against androgen-independent prostate cancer cells in vitro and in vivo and suggest that capsaicin is a promising anti-tumor agent in hormone-refractory prostate cancer, which shows resistance to many chemotherapeutic agents.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.