Background: Myocardial injury, defined by elevated troponin levels, is associated with adverse outcome in patients with coronavirus disease 2019 (COVID-19). The frequency of cardiac injury remains highly uncertain and confounded in current publications; myocarditis is one of several mechanisms that have been proposed. Methods: We prospectively assessed patients with myocardial injury hospitalized for COVID-19 using transthoracic echocardiography, cardiac magnetic resonance imaging, and endomyocardial biopsy. Results: Eighteen patients with COVID-19 and myocardial injury were included in this study. Echocardiography revealed normal to mildly reduced left ventricular ejection fraction of 52.5% (46.5%–60.5%) but moderately to severely reduced left ventricular global longitudinal strain of −11.2% (−7.6% to −15.1%). Cardiac magnetic resonance showed any myocardial tissue injury defined by elevated T1, extracellular volume, or late gadolinium enhancement with a nonischemic pattern in 16 patients (83.3%). Seven patients (38.9%) demonstrated myocardial edema in addition to tissue injury fulfilling the Lake-Louise criteria for myocarditis. Combining cardiac magnetic resonance with speckle tracking echocardiography demonstrated functional or morphological cardiac changes in 100% of investigated patients. Endomyocardial biopsy was conducted in 5 patients and revealed enhanced macrophage numbers in all 5 patients in addition to lymphocytic myocarditis in 1 patient. SARS-CoV-2 RNA was not detected in any biopsy by quantitative real-time polymerase chain reaction. Finally, follow-up measurements of left ventricular global longitudinal strain revealed significant improvement after a median of 52.0 days (−11.2% [−9.2% to −14.7%] versus −15.6% [−12.5% to −19.6%] at follow-up; P =0.041). Conclusions: In this small cohort of COVID-19 patients with elevated troponin levels, myocardial injury was evidenced by reduced echocardiographic left ventricular strain, myocarditis patterns on cardiac magnetic resonance, and enhanced macrophage numbers but not predominantly lymphocytic myocarditis in endomyocardial biopsies.
Objectives Beta-lactam antibiotics are often subject to therapeutic drug monitoring, but breakpoints of target attainment are mostly based on expert opinions. Studies that show a correlation between target attainment and infection resolution are missing. This analysis investigated whether there is a difference in infection resolution based on two breakpoints of target attainment. Methods An outcome group out of 1392 critically ill patients treated with meropenem or piperacillin-tazobactam was formed due to different selection criteria. Afterwards, three groups were created: group 1=free drug concentration (f) was < 100% of the time (T) above the minimal inhibitory concentration (MIC) (< 100% fT >MIC), group 2=100% fT >MIC<4xMIC, and group 3=100% fT >4xMIC. Parameters for infection control, renal and liver function, and estimated and observed in-hospital mortality were compared between those groups. Statistical analysis was performed with one-way analysis of variance, Tukey post hoc test, U test, and bivariate logistic regression. Results The outcome group consisted of 55 patients (groups 1–3, 17, 24, and 14 patients, respectively). Patients allocated to group 2 or 3 had a significantly faster reduction of the C-reactive protein in contrast to patients allocated to group 1 (p = 0.033 and p = 0.026). Patients allocated to group 3 had a worse renal function, a higher Acute Physiology and Chronic Health Evaluation (APACHE II) score, were older, and had a significantly higher in-hospital mortality compared to group 1 (p = 0.017) and group 2 (p = 0.001). The higher mortality was significantly influenced by worse liver function, higher APACHE II, and higher Sequential Organ Failure Assessment (SOFA) score and norepinephrine therapy. Conclusion Achieving the target 100% fT >MIC leads to faster infection resolution in the critically ill. However, there was no benefit for patients who reached the highest target of 100% fT >4xMIC, although the mortality rate was higher possibly due to confounding effects. In conclusion, we recommend the target 100% fT >MIC<4xMIC for critically ill patients. Trial registration NCT03985605
Purpose SARS-COV-2 infection can develop into a multi-organ disease. Although pathophysiological mechanisms of COVID-19-associated myocardial injury have been studied throughout the pandemic course in 2019, its morphological characterisation is still unclear. With this study, we aimed to characterise echocardiographic patterns of ventricular function in patients with COVID-19-associated myocardial injury. Methods We prospectively assessed 32 patients hospitalised with COVID-19 and presence or absence of elevated high sensitive troponin T (hsTNT+ vs. hsTNT-) by comprehensive three-dimensional (3D) and strain echocardiography. Results A minority (34.3%) of patients had normal ventricular function, whereas 65.7% had left and/or right ventricular dysfunction defined by impaired left and/or right ventricular ejection fraction and strain measurements. Concomitant biventricular dysfunction was common in hsTNT+ patients. We observed impaired left ventricular (LV) global longitudinal strain (GLS) in patients with myocardial injury (-13.9% vs. -17.7% for hsTNT+ vs. hsTNT-, p = 0.005) but preserved LV ejection fraction (52% vs. 59%, p = 0.074). Further, in these patients, right ventricular (RV) systolic function was impaired with lower RV ejection fraction (40% vs. 49%, p = 0.001) and reduced RV free wall strain (-18.5% vs. -28.3%, p = 0.003). Myocardial dysfunction partially recovered in hsTNT + patients after 52 days of follow-up. In particular, LV-GLS and RV-FWS significantly improved from baseline to follow-up (LV-GLS: -13.9% to -16.5%, p = 0.013; RV-FWS: -18.5% to -22.3%, p = 0.037). Conclusion In patients with COVID-19-associated myocardial injury, comprehensive 3D and strain echocardiography revealed LV dysfunction by GLS and RV dysfunction, which partially resolved at 2-month follow-up. Trial registration COVID-19 Registry of the LMU University Hospital Munich (CORKUM), WHO trial ID DRKS00021225.
Background Rhabdomyolysis is frequently occurring in critically ill patients, resulting in a high risk of acute kidney injury (AKI) and potentially permanent kidney damage due to increased myoglobin levels. The extracorporeal elimination of myoglobin might be an approach to prevent AKI, but its molecular weight of 17 kDa complicates an elimination with conventional dialysis membranes. Question of interest is, if myoglobin can be successfully eliminated with the cytokine adsorber Cytosorb® (CS) integrated in a high-flux dialysis system. Methods Patients were included between 10/2014 and 05/2020 in the study population if they had an anuric renal failure with the need of renal replacement therapy, if CS therapy was longer than 90 min and if myoglobin level was > 5.000 ng/ml before treatment. The measurement times of the laboratory values were: d-1 = 24–36 h before CS, d0 = shortly before starting CS and d1 = 12–24 h after starting CS treatment. Statistical analysis were performed with Spearman’s correlation coefficient, Wilcoxon test with associated samples and linear regression analysis. Results Forty-three patients were included in the evaluation (median age: 56 years, 77% male patients, 32.6% ECMO therapy, median SAPS II: 80 points and in-hospital mortality: 67%). There was a significant equilateral correlation between creatine kinase (CK) and myoglobin at all measurement points. Furthermore, there was a significant reduction of myoglobin (p = 0.03, 95% confidence interval (CI): − 9030, − 908 ng/ml) during CS treatment, with a median relative reduction of 29%. A higher median reduction of 38% was seen in patients without ongoing rhabdomyolysis (CK decreased during CS treatment, n = 21). In contrast, myoglobin levels did not relevantly change in patients with increasing CK and therefore ongoing rhabdomyolysis (n = 22, median relative reduction 4%). Moreover, there was no significant difference in myoglobin elimination in patients with and without ECMO therapy. Conclusion Blood purification with Cytosorb® during high-flux dialysis led to a significant reduction of myoglobin in patients with severe rhabdomyolysis. The effect might be obscured by sustained rhabdomyolysis, which was seen in patients with rising CK during treatment. Prospective clinical trials would be useful in investigating its benefits in avoiding permanent kidney damage.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.