In mice, prenatal exposure to low doses of bisphenol A has been shown to affect neurogenesis and neuronal migration in cortex, resulting in disturbance of both neuronal positioning and the network formation between thalamus and cortex in the offspring brain. In the present study we investigated whether prenatal exposure to bisphenol A disturbs the neurodevelopment of the cerebellum. Two different model systems were used; offspring from two strains of mice from mothers receiving bisphenol A in the drinking water before mating, during gestation and lactation, and chicken embryos exposed to bisphenol A (in the egg) on embryonic day 16 for 24h before preparation of cerebellar granule cell cultures. In the cerebellum, tight regulation of the level of transcription factor Pax6 is critical for correct development of granule neurons. During the development, the Pax6 level in granule neurons is high when these cells are located in the external granule layer and during their migration to the internal granule layer, and it is then reduced. We report that bisphenol A induced an increase in the thickness of the external granule layer and also an increase in the total cerebellar Pax6 level in 11 days old mice offspring. In cultured chicken cerebellar granule neurons from bisphenol A injected eggs the Pax6 level was increased day 6 in vitro. Together, these findings indicate that bisphenol A may affect the granule neurons in the developing cerebellum and thereby may disturb the correct development of the cerebellum.
Background: Patients developing meningococcal septic shock reveal levels of Neisseria meningitidis (10 6-10 8 /mL) and endotoxin (10 1-10 3 EU/mL) in the circulation and organs, leading to acute cardiovascular, pulmonary and renal failure, coagulopathy and a high case fatality rate within 24 h. Objective: To investigate transcriptional profiles in heart, lungs, kidneys, liver, and spleen and immunostain key inflammatory cells and proteins in post mortem formalin-fixed, paraffin-embedded (FFPE) tissue samples from meningococcal septic shock patients. Patients and Methods: Total RNA was isolated from FFPE and fresh frozen (FF) tissue samples from five patients and two controls (acute non-infectious death). Differential expression of genes was detected using Affymetrix microarray analysis. Lung and heart tissue samples were immunostained for T-and B cells, macrophages, neutrophils and the inflammatory markers PAI-1 and MCP-1. Inflammatory mediators were quantified in lysates from FF tissues. Results: The transcriptional profiles showed a complex pattern of protein-coding and non-coding RNAs with significant regulation of pathways associated with organismal death, cell death and survival, leukocyte migration, cellular movement, proliferation of cells, cell-to-cell signaling, immune cell trafficking, and inflammatory responses in an organ-specific clustering manner. The canonical pathways including acute phase response-, EIF2-, TREM1-, IL-6-, HMBG1-, PPAR signaling, and LXR/RXR activation were associated with acute heart, pulmonary, and renal failure. Fewer genes were regulated in the liver and particularly in the spleen. The main upstream regulators were TNF, IL-1β, IL-6, RICTOR, miR-6739-3p, and CD3. Increased numbers of inflammatory cells (CD68+, MPO+, CD3+, and CD20+) were found in lungs and heart. PAI-1 inhibiting Brusletto et al. Transcriptional Profiles in MSS Organs fibrinolysis and MCP-1 attracting leukocyte were found significantly present in the septic tissue samples compared to the controls. Conclusions: FFPE tissue samples can be suitable for gene expression studies as well as immunostaining of specific cells or molecules. The most pronounced gene expression patterns were found in the organs with highest levels of Neisseria meningitidis DNA. Thousands of protein-coding and non-coding RNA transcripts were altered in lungs, heart and kidneys. We identified specific biomarker panels both protein-coding and non-coding RNA transcripts, which differed from organ to organ. Involvement of many genes and pathways add up and the combined effect induce organ failure.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.