Farm animals are a potential reservoir for human Clostridium difficile infection (CDI), particularly PCR ribotype 078 which is frequently found in animals and humans. Here, whole genome single-nucleotide polymorphism (SNP) analysis was used to study the evolutionary relatedness of C. difficile 078 isolated from humans and animals on Dutch pig farms. All sequenced genomes were surveyed for potential antimicrobial resistance determinants and linked to an antimicrobial resistance phenotype. We sequenced the whole genome of 65 C. difficile 078 isolates collected between 2002 and 2011 from pigs (n = 19), asymptomatic farmers (n = 15) and hospitalised patients (n = 31) in the Netherlands. The collection included 12 pairs of human and pig isolates from 2011 collected at 12 different pig farms. A mutation rate of 1.1 SNPs per genome per year was determined for C. difficile 078. Importantly, we demonstrate that farmers and pigs were colonised with identical (no SNP differences) and nearly identical (less than two SNP differences) C. difficile clones. Identical tetracycline and streptomycin resistance determinants were present in human and animal C. difficile 078 isolates. Our observation that farmers and pigs share identical C. difficile strains suggests transmission between these populations, although we cannot exclude the possibility of transmission from a common environmental source.
The emergence of Clostridium difficile as a significant human diarrheal pathogen is associated with the production of highly transmissible spores and the acquisition of antimicrobial resistance genes (ARGs) and virulence factors. Unlike the hospital-associated C. difficile RT027 lineage, the community-associated C. difficile RT078 lineage is isolated from both humans and farm animals; however, the geographical population structure and transmission networks remain unknown. Here, we applied whole-genome phylogenetic analysis of 248 C. difficile RT078 strains from 22 countries. Our results demonstrate limited geographical clustering for C. difficile RT078 and extensive coclustering of human and animal strains, thereby revealing a highly linked intercontinental transmission network between humans and animals. Comparative whole-genome analysis reveals indistinguishable accessory genomes between human and animal strains and a variety of antimicrobial resistance genes in the pangenome of C. difficile RT078. Thus, bidirectional spread of C. difficile RT078 between farm animals and humans may represent an unappreciated route disseminating antimicrobial resistance genes between humans and animals. These results highlight the importance of the “One Health” concept to monitor infectious disease emergence and the dissemination of antimicrobial resistance genes.
To survey healthcare-associated Clostridium difficile infection (HA-CDI) in a 900-bed tertiary-care hospital, we prospectively investigated the epidemiology of CDI and distribution of PCR-ribotypes. From February 2009 through January 2010, all patients with HA-CDI were enrolled. Epidemiological information and prescription records for antibiotics were collected. The C. difficile isolates were characterized using reference strains and were tested for antibiotic susceptibility. During the survey, incidence of HA-CDI was 71.6 per 100 000 patient-days. In total, 140 C. difficile isolates were obtained from 166 patients with HA-CDI. The PCR-ribotyping yielded 38 distinct ribotypes. The three most frequently found ribotypes made up 56.4% of all isolates; they comprised 37 isolates (26.4%) of PCR-ribotype 018, 22 (15.7%) of toxin A-negative PCR-ribotype 017, and 20 (14.3%) of PCR-ribotype 001. Clostridium difficile PCR-ribotype 018 was present in all departments throughout the hospital during the 11 months, whereas ribotype 017 and ribotype 001 appeared mostly in the pulmonary department. Hypervirulent C. difficile PCR-ribotype 027 was detected in 1 month on two wards. The incidence of CDI in each department showed a seven-fold difference, which correlated significantly with the amount of prescribed clindamycin (R = 0.783, p 0.013) or moxifloxacin (R = 0.733, p 0.025) in the departments. The rates of resistance of the three commonest ribotypes to clindamycin and moxifloxacin were significantly higher than those of other strains (92.1% versus 38.2% and 89.5% versus 27.3%, respectively). CDI is an important nosocomially acquired infection and this study emphasizes the importance of implementing country-wide surveillance to detect and control CDI in Korea.
Gut microbiota composition in patients with Clostridioides difficile colonization is not well investigated. We aimed to identify bacterial signatures associated with resistance and susceptibility to C. difficile colonization (CDC) and infection (CDI). Therefore, gut microbiota composition from patients with CDC (n = 41), with CDI (n = 41), and without CDC (controls, n = 43) was determined through 16S rRNA gene amplicon sequencing. Bacterial diversity was decreased in CDC and CDI patients (p < 0.01). Overall microbiota composition was significantly different between control, CDC, and CDI patients (p = 0.001). Relative abundance of Clostridioides (most likely C. difficile) increased stepwise from controls to CDC and CDI patients. In addition, differential abundance analysis revealed that CDI patients’ gut microbiota was characterized by significantly higher relative abundance of Bacteroides and Veillonella than CDC patients and controls. Control patients had significantly higher Eubacterium hallii and Fusicatenibacter abundance than colonized patients. Network analysis indicated that Fusicatenibacter was negatively associated with Clostridioides in CDI patients, while Veillonella was positively associated with Clostridioides in CDC patients. Bacterial microbiota diversity decreased in both CDC and CDI patients, but harbored a distinct microbiota. Eubacterium hallii and Fusicatenibacter may indicate resistance against C. difficile colonization and subsequent infection, while Veillonella may indicate susceptibility to colonization and infection by C. difficile.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.