14 15Exquisitely sensitive broadband detectors are needed to expand the capabilities of biomedical ultrasound, 30The sensitive detection of broadband ultrasound waves in the hundreds of kHz to tens of beam as required to achieve small element size for low directional sensitivity. 107The strong optical confinement afforded by the planoconcave microresonator design creates the opportunity 108 to maximise sensitivity in two ways. The first is by increasing the mirror reflectivity, trapping light for longer 109 and increasing the number of significant round trips in the cavity, leading to a higher Q-factor and thus a higher showing the 50% cut-off for the modelled response of a disk-shaped purely spatially averaging sensor of diameter 2mm. c, 161Directional response of 100μm sensor at selected frequencies as compared to the modelled response of a disk-shaped 162 spatially averaging receiver of diameter 2mm. For all data: w " = 12.5μm. 164Along with the NEP measurements in figure 1, the frequency response data in figure 2
Polydimethylsiloxane (PDMS) is widely used in biomedical science and can form composites that have broad applicability. One promising application where PDMS composites offer several advantages is optical ultrasound generation via the photoacoustic effect. Here, methods to create these PDMS composites are reviewed and classified. It is highlighted how the composites can be applied to a range of substrates, from micrometer‐scale, temperature‐sensitive optical fibers to centimeter‐scale curved and planar surfaces. The resulting composites have enabled all‐optical ultrasound imaging of biological tissues both ex vivo and in vivo, with high spatial resolution and with clinically relevant contrast. In addition, the first 3D all‐optical pulse‐echo ultrasound imaging of ex vivo human tissue, using a PDMS‐multiwalled carbon nanotube composite and a fiber‐optic ultrasound receiver, is presented. Gold nanoparticle‐PDMS and crystal violet‐PDMS composites with prominent absorption at one wavelength range for pulse‐echo ultrasound imaging and transmission at a second wavelength range for photoacoustic imaging are also presented. Using these devices, images of diseased human vascular tissue with both structural and molecular contrast are obtained. With a broader perspective, literature on recent advances in PDMS microfabrication from different fields is highlighted, and methods for incorporating them into new generations of optical ultrasound generators are suggested.
Polymer-carbon nanotube composite coatings have properties that are desirable for a wide range of applications. However, fabrication of these coatings onto submillimeter structures with the efficient use of nanotubes has been challenging. Polydimethylsiloxane (PDMS)-carbon nanotube composite coatings are of particular interest for optical ultrasound transmission, which shows promise for biomedical imaging and therapeutic applications. In this study, methods for fabricating composite coatings comprising PDMS and multiwalled carbon nanotubes (MWCNTs) with submicrometer thickness are developed and used to coat the distal ends of optical fibers. These methods include creating a MWCNT organogel using two solvents, dip coating of this organogel, and subsequent overcoating with PDMS. These coated fibers are used as all-optical ultrasound transmitters that achieve high ultrasound pressures (up to 21.5 MPa peak-to-peak) and broad frequency bandwidths (up to 39.8 MHz). Their clinical potential is demonstrated with all-optical pulse-echo ultrasound imaging of an aorta. The fabrication methods in this paper allow for the creation of thin, uniform carbon nanotube composites on miniature or temperature-sensitive surfaces, to enable a wide range of advanced sensing capabilities.
An all-optical ultrasound probe for vascular tissue imaging was developed. Ultrasound was generated by pulsed laser illumination of a functionalized carbon nanotube composite coating on the end face of an optical fiber. Ultrasound was detected with a Fabry-Pérot (FP) cavity on the end face of an adjacent optical fiber. The probe diameter was < 0.84 mm and had an ultrasound bandwidth of ~20 MHz. The probe was translated across the tissue sample to create a virtual linear array of ultrasound transmit/receive elements. At a depth of 3.5 mm, the axial resolution was 64 µm and the lateral resolution was 88 µm, as measured with a carbon fiber target. Vascular tissues from swine were imaged ex vivo and good correspondence to histology was observed.
Monoclinic vanadium (IV) oxide (VO2) has received much attention for applications as intelligent solar control coatings, with the potential to reduce the need for both heating and air conditioning loads within building infrastructure. Chemical vapour deposition-a high-throughput industrially scalable method-is an ideal technology for the deposition of VO2 thin films on window panels. However, these films suffer from poor adhesion and are chemically susceptible to attack. In addition, the VO2 films with optimum solar modulation are unfortunately translucent, restraining their commercial use in energy-efficient fenestration. In this work, multi-functional, robust, layered VO2/SiO2/TiO2 films were quickly deposited on glass substrates using atmospheric-pressure chemical vapour deposition and fully characterised using structural, vibrational spectroscopy and electron microscopy techniques. The VO2/SiO2/TiO2 thin films were designed to exhibit excellent solar modulation properties as well as high transparency and resistance to abrasion, compared to single VO2 films of the same thickness. The films also showed self-cleaning properties comparable to those of commercial Pilkington Activ TM glass, as demonstrated here during the photodegradation of a model organic pollutant (stearic acid). The SiO2 acted as a barrier layer, preventing the diffusion of Ti 4+ ions into the VO2 layer but it also promoted the optical properties and allowed for superior thermochromic behaviour when compared to single VO2 films. The system was modelled to determine the effect of the individual components on the properties of the overall material. It was found that the deposition of the SiO2/TiO2 overlayer resulted in a dramatic improvement of visible light transmission (~30 % increase when compared to single layer analogues) whilst also doubling the solar modulation of the material.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.