Rat brain astrocyte and microglia cultures express different members of ATP-binding-cassette (ABC) proteins. RT-PCR analysis showed that astrocytes are equipped with P-glycoprotein (mdr1a, mdr1b), multidrug resistance-associated-protein (mrp1, mrp4, mrp5) and cystic fibrosis transmembrane conductance regulator (CFTR). No transcripts for mrp5 and CFTR were detected in microglia. The ABC protein functional activities are shown by the following results: (i) cyclosporin A (50 microM), verapamil (50 microM), probenecid (1 mM) or sulfinpyrazone (2 mM) enhanced [3H]vincristine accumulation; (ii) cyclosporin A or verapamil but not probenecid or sulfinpyrazone enhanced [3H]digoxin accumulation; (iii) glibenclamide (100 microM) inhibited 36Cl efflux from astrocytes. ATP release from glial cells was inhibited by the pretreatment with ABC protein inhibitors indicating that ABC proteins are involved in nucleotide efflux from glial cells which represent the main source of cerebral extracellular purines.
Brain ischemia stimulates release from astrocytes of adenine-based purines, particularly adenosine, which is neuroprotective. Guanosine, which has trophic properties that may aid recovery following neurological damage, is present in high local concentrations for several days after focal cerebral ischemia. We investigated whether guanine-based purines, like their adenine-based counterparts, were released from astrocytes and whether their release increased following hypoxia/hypoglycemia. HPLC analysis of culture medium of rat astrocytes showed spontaneous release of endogenous guanine-based purines at a higher rate than their adenine-based counterparts. The concentration of guanosine (approximately 120 nM) and adenosine (approximately 43 nM) in the culture medium remained constant, whereas concentrations of adenine and guanine nucleotides, particularly GMP, and their metabolites increased with time. Exposure of the cultures to hypoxia/hypoglycemia for 30 min increased the extracellular concentration of adenine-based purines by 2.5-fold and of guanine-based purines by 3.5-fold. Following hypoxia/hypoglycemia extracellular adenine nucleotide levels increased further. Adenosine concentration increased, but not proportionally to nucleotide levels. Accumulation of adenosine metabolites indicated it was rapidly metabolized. Conversely, the concentrations of extracellular guanine-based nucleotides remained elevated and the concentration of guanosine continued to increase. These data indicate that astrocytes are a major source of guanine-based purines, the release of which is markedly increased following hypoxia/hypoglycemia, permitting them to exert neurotrophic effects.
Guanosine has many trophic effects in the CNS, including the stimulation of neurotrophic factor synthesis and release by astrocytes, which protect neurons against excitotoxic death. Therefore, we questioned whether guanosine protected astrocytes against apoptosis induced by staurosporine. We evaluated apoptosis in cultured rat brain astrocytes, following exposure (3 h) to 100 nM staurosporine by acridine orange staining or by oligonucleosome, or caspase-3 ELISA assays. Staurosporine promoted apoptosis rapidly, reaching its maximal effect (approximately 10-fold over basal apoptotic values) in 18-24 h after its administration to astrocytes. Guanosine, added to the culture medium for 4 h, starting from 1 h prior to staurosporine, reduced the proportion of apoptotic cells in a concentration-dependent manner. The IC50 value for the inhibitory effect of guanosine is 7.5 x 10(-5) M. The protective effect of guanosine was not affected by inhibiting the nucleoside transporters by propentophylline, or by the selective antagonists of the adenosine A1 or A2 receptors (DPCPX or DMPX), or by an antagonist of the P2X and P2Y purine receptors (suramin). In contrast, pretreatment of astrocytes with pertussis toxin, which uncouples Gi-proteins from their receptors, abolished the antiapoptotic effect of guanosine. The protective effect of guanosine was also reduced by pretreatment of astrocytes with inhibitors of the phosphoinositide 3-kinase (PI3K; LY294002, 30 microM) or the MAPK pathway (PD98059, 10 microM). Addition of guanosine caused a rapid phosphorylation of Akt/PKB, and glycogen synthase kinase-3beta (GSK-3beta) and induced an upregulation of Bcl-2 mRNA and protein expression. These data demonstrate that guanosine protects astrocytes against staurosporine-induced apoptosis by activating multiple pathways, and these are mediated by a Gi-protein-coupled putative guanosine receptor.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.