Type 2 diabetes mellitus (T2DM) remains one of the most problematic and economic consumer disorders worldwide, with growing prevalence and incidence. Over the last years, substantial research has highlighted the intricate relationship among gut microbiota, dysbiosis and metabolic syndromes development. Changes in the gut microbiome composition lead to an imbalanced gastrointestinal habitat which promotes abnormal production of metabolites, inflammatory status, glucose metabolism alteration and even insulin resistance (IR). Short-chain fatty acids (SCFAs), trimethylamine N-oxide (TMAO), lipopolysaccharide, aromatic amino acids and their affiliated metabolites, contribute to T2DM via different metabolic and immunologic pathways. In this narrative review, we discuss the immunopathogenic mechanism behind gut dysbiosis, T2DM development and the major known diabetic microvascular complications (retinopathy, neuropathy and nephropathy), the beneficial use of pre- and pro-biotics and fecal microbiota transplantation in T2DM management and new findings and future perspectives in this field.
VC (vascular calcification) is highly prevalent in patients with CKD (chronic kidney disease), but its mechanism is multifactorial and incompletely understood. In addition to increased traditional risk factors, CKD patients also have a number of non-traditional cardiovascular risk factors, which may play a prominent role in the pathogenesis of arterial calcification, such as duration of dialysis and disorders of mineral metabolism. The transformation of vascular smooth muscle cells into chondrocytes or osteoblast-like cells seems to be a key element in VC pathogenesis, in the context of passive calcium and phosphate deposition due to abnormal bone metabolism and impaired renal excretion. The process may be favoured by the low levels of circulating and locally produced VC inhibitors. VC determines increased arterial stiffness, left ventricular hypertrophy, a decrease in coronary artery perfusion, myocardial ischaemia and increased cardiovascular morbidity and mortality. Although current therapeutic strategies focus on the correction of phosphate, calcium, parathyroid hormone or vitamin D, a better understanding of the mechanisms of abnormal tissue calcification may lead to development of new therapeutic agents, which could reduce VC and improve cardiovascular outcome in CKD patients. The present review summarizes the following aspects: (i) the pathophysiological mechanism responsible for VC and its promoters and inhibitors, (ii) the methods for detection of VC in patients with CKD, including evaluation of arterial stiffness, and (iii) the management of VC in CKD patients.
The process of melanin synthesis and distribution is called melanogenesis, a process that is based on melanocytes present among the basal cells of the epidermis. Pigments formed in melanocyte melanosomes are then stored in the basal layer of epidermal cells, as well as in dermal macrophages, which become melanophores. From the embryological point of view, melanocytes derive from the melanoblasts of the neural crest, from where they migrate during the first months of life into the skin, eye, cochlea, bone, peripheral nervous system, heart and adipose tissue. The melanic pigments, eumelanin and pheomelanin, are the final product of complex biochemical reactions starting from the amino acid L-tyrosine. Melanin has a major role in skin homeostasis through the photoprotection it offers from the harmful effect of ultraviolet radiation. Melanin absorbs and/or reflects ultraviolet radiation but is also involved in the neutralizing process of free radicals and reactive oxygen species. Pigmentogenesis is a dependent oxygen process and is controlled by intrinsic factors (genetic and hormonal) as well as extrinsic factors (ultraviolet radiation). Melanogenesis is stimulated by stimulant melanocytic hormone, adrenocorticotropin hormone, estrogens and progesterone. The present review aimed to provide a summary of recent data about melanogenesis physiology.
In hemodialysis, volume overload is an important contributor to increased arterial stiffness and modifies cardiovascular status especially by LV hypertrophy. Achieving normohydration may significantly ameliorate cardiac abnormalities and arterial stiffness and may impact major clinical events and CV mortality.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.