The objective of this study is to adopt a methodology for analysing spatial patterns of danger of forest fire at Margalla Hills, Islamabad, Pakistan. The work is concentrated on burnt areas using Landsat data and to classify forest fire severity with different parameters (climatic, vegetation, topography and human activities). In addition to these four variables, the extent of the burned areas was measured. Statistical analysis at each fire scene was used to measure the effect on the variables. To calculate the fire severity ratio correlated to each variable, logistic and stepwise regressions were used. The results showed that the burned areas have increased at a rate of 25.848 ha/day (R 2 ¼ 0.98) if the number of total days since the start of fire has increased. As a result, forest density, distance to roads, average quarterly maximum temperature and average quarterly mean wind speed were highly correlated with the fire severity. Only average quarterly maximum temperature and forest density affected the size of the burnt areas. Prediction maps indicate that 53% of forests are in the very low severity level (0.25-0.45), 25% in the low level (0.45-0.65) and 22% in high and very high levels (>0.65).
The extent of wildfires cannot be easily mapped using field-based methods in areas with complex topography, and in those areas the use of remote sensing is an alternative. This study first obtained images from the Sentinel-2 satellites for the period 2015–2020 with the objective of applying multi-temporal spectral indices to assess areas burned in wildfires and prescribed fires in the Margalla Hills of Pakistan using the Google Earth Engine (GEE). Using those images, the Normalized Difference Vegetation Index (NDVI) and the Normalized Burn Ratio (NBR), which are often used to assess the severity of fires, were calculated for wildfires and prescribed fires. For each satellite image, spectral indices values were extracted for the 5th, 20th, 40th, 60th, 80th and 95th percentiles of pixels of each burned area. Then, boxplots representing the distribution of these values were plotted for each satellite image to identify whether the regeneration time subsequent to a fire, also known as the burn scar, and the severity of the fire differed between the autumn and summer wildfires, and with prescribed fires. A statistical test revealed no differences for the regeneration time amongst the three categories of fires, but that the severity of summer wildfires was significantly different from that of prescribed fire, and this, for both indices. Second, SAR images were obtained from the Sentinel-1 mission for the same period as that of the optical imagery. A comparison of the response of 34 SAR variables with official data on wildfires and prescribed fires from the Capital Development Authority revealed that the 95th percentile of the Normalized Signal Ratio (NSR p_95) was found to be the best variable to detect fire events, although only 50% of the fires were correctly detected. Nonetheless, when the occurrence of fire events according to the SAR variable NSR p_95 was compared to that from the two spectral indices, the SAR variable was found to correctly identify 95% of fire events. The SAR variable NSR p_95 is thus a suitable alternative to spectral indices to monitor the progress of wildfires and assess their severity when there are limitations to the use of optical images due to cloud coverage or smoke, for instance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.