The results demonstrate the critical role of the N-terminal domain of Nav1.5 channels in Nav1.5-Kir2.x-reciprocal interactions and suggest that the molecular mechanisms controlling atrial and ventricular cellular excitability may be different.
Our results demonstrated that in SR there are intra-atrial heterogeneities in the repolarizing currents. CAF decreases I(to1) and I(Kur) differentially in each atrium and increases I(Ks) in both atria, an effect that further promotes re-entry.
Our results demonstrated for the first time that CAF increases Pitx2c expression in isolated human atrial myocytes and suggested that this transcription factor could contribute to the CAF-induced IKs increase and ICa,L reduction observed in humans.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.