In recent years it has become clear that the therapeutic properties of bone marrow-derived mesenchymal stromal cells (MSC) are related not only to their ability to differentiate into different lineages but also to their capacity to suppress the immune response. We here studied the influence of MSC on macrophage function. Using mouse thioglycolate-elicited peritoneal macrophages (M) stimulated with LPS, we found that MSC markedly suppressed the production of the inflammatory cytokines TNF-α, IL-6, IL-12p70 and interferon-γ while increased the production of IL-10 and IL-12p40. Similar results were observed using supernatants from MSC suggesting that factor(s) constitutively released by MSC are involved. Supporting a role for PGE2 we observed that acetylsalicylic acid impaired the ability of MSC to inhibit the production of inflammatory cytokines and to stimulate the production of IL-10 by LPS-stimulated M. Moreover, we found that MSC constitutively produce PGE2 at levels able to inhibit the production of TNF-α and IL-6 by activated M. MSC also inhibited the up-regulation of CD86 and MHC class II in LPS-stimulated M impairing their ability to activate antigen-specific T CD4+ cells. On the other hand, they stimulated the uptake of apoptotic thymocytes by M. Of note, MSC turned M into cells highly susceptible to infection with the parasite Trypanosoma cruzi increasing more than 5-fold the rate of M infection. Using a model of inflammation triggered by s.c. implantation of glass cylinders, we found that MSC stimulated the recruitment of macrophages which showed a low expression of CD86 and the MHC class II molecule Iab and a high ability to produce IL-10 and IL-12p40, but not IL-12 p70. In summary, our results suggest that MSC switch M into a regulatory profile characterized by a low ability to produce inflammatory cytokines, a high ability to phagocyte apoptotic cells, and a marked increase in their susceptibility to infection by intracellular pathogens.
The cytokine-mediated stimulation of the hypothalamuspituitary-adrenal (HPA) axis is relevant for survival during bacterial endotoxemia and certain viral infections. However, only limited information is available regarding the effects of endogenous glucocorticoids on parasite diseases. We have studied this issue using, as a model, C57Bl/6 and Balb/c mice infected with Trypanosoma cruzi, the causal agent of Chagas' disease. These two mouse strains differ in the susceptibility to infection with the parasite. An intense stimulation of the HPA-axis was observed 3 weeks after infection in both strains, but glucocorticoid levels were already increased two-to threefold in the less susceptible Balb/c strain during the first week. Blockade of glucocorticoid receptors with the glucocorticoid antagonist RU486, starting on day 10 after infection, partially reversed the thymic atrophy and decreased the number of CD4 C CD8 C thymocytes without affecting parasitemia and the number of inflammatory foci in the heart. However, tumor necrosis factor-a blood levels were increased in infected mice of both strains treated with RU486. Furthermore, the blockade of glucocorticoid receptors accelerated death in C57Bl/6J mice and increased lethality to 100% in Balb/c mice. The results obtained represent the first evidence that an endocrine host response that is coupled to the immune process can strongly affect the course of a parasite infection.
SUMMARY Inoculation of Trypanosoma cruzi, Tulahuén strain, into C57BL/6 and BALB/c mice led to an acute infection characterized by marked parasitaemia, myocardial inflammation and thymocyte depletion. While C57BL/6 mice showed a progressive and lethal disease, BALB/c mice partly recovered. To characterize these murine models more effectively, we studied the parasite burden, serum levels of major infection outcome‐related cytokines, the in vitro features of T. cruzi infection in peritoneal macrophages and the immunophenotype of thymic cells. The greater disease severity of T. cruzi‐infected C57BL/6 mice was not linked to an increased parasite load, as parasitaemia, myocardial parasite nests and amastigote counts in peritoneal macrophages were not different from those in BALB/c mice. Cortical thymocyte loss was accompanied by the presence of apoptotic bodies and fragmented nuclear DNA, whereas fluorocytometric analysis at 17 days postinfection (p.i.) revealed a more pronounced loss of CD4+ CD8+ cells in C57BL/6 mice. This group displayed higher levels of TNF‐α on days 14 and 21 p.i., in the presence of lower IL‐1β and IL‐10 concentrations by days 14 and 21, and days 7 and 14 p.i., respectively. Day‐21 evaluation showed higher concentrations of nitrate and TNF‐α soluble receptors in C57BL/6 mice with no differences in IFN‐γ levels, with respect to the BALB/c group. Increased morbidity of C57BL/6 T. cruzi‐infected mice does not seem to result from an aggravated infection but from an unbalanced relationship between pro‐ and anti‐inflammatory mediators.
Mouse mammary tumor virus (MMTV) is
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.