We review the theoretical status of squark and gluino hadroproduction and provide numerical predictions for all squark and gluino pair-production processes at the Tevatron and at the LHC, with a particular emphasis on proton-proton collisions at 7 TeV. Our predictions include next-to-leading order supersymmetric QCD corrections and the resummation of soft gluon emission at next-to-leading-logarithmic accuracy. We discuss 1 May 6, 2011 0:24 susy-review 2 Wim Beenakker et al.the impact of the higher-order corrections on total cross sections, and provide an estimate of the theoretical uncertainty due to scale variation and the parton distribution functions.
We consider the resummation of soft gluon emission for squark and gluino hadroproduction at next-to-leading-logarithmic (NLL) accuracy in the framework of the minimal supersymmetric standard model. We present analytical results for squark-squark and squark-gluino production and provide numerical predictions for all squark and gluino pair-production processes at the Tevatron and at the LHC. The size of the soft-gluon corrections and the reduction in the scale uncertainty are most significant for processes involving gluino production. At the LHC, where the sensitivity to squark and gluino masses ranges up to 3 TeV, the corrections due to NLL resummation over and above the NLO predictions can be as high as 35% in the case of gluino-pair production, whereas at the Tevatron, the NLL corrections are close to 40% for squark-gluino final states with sparticle masses around 500 GeV.
The scalar partners of top and bottom quarks are expected to be the lightest
squarks in supersymmetric theories, with potentially large cross sections at
hadron colliders. We present predictions for the production of top and bottom
squarks at the Tevatron and the LHC, including next-to-leading order
corrections in supersymmetric QCD and the resummation of soft gluon emission at
next-to-leading-logarithmic accuracy. We discuss the impact of the higher-order
corrections on total cross sections and transverse-momentum distributions, and
provide an estimate of the theoretical uncertainty due to scale variation and
the parton distribution functions.Comment: 29 pages, 6 figure
Abstract:We consider the resummation of soft gluon emission for squark-antisquark pair-production at the LHC at next-to-next-to-leading-logarithmic (NNLL) accuracy in the framework of the minimal supersymmetric standard model. We present the analytical ingredients needed for the calculation and provide numerical predictions for the LHC at centre-of-mass energies of 7 and 14 TeV. We find a significant reduction in the scale uncertainty and a considerable increase in the prediction of the total cross section. Compared to the next-to-leading order prediction, the corrections increase the cross section by up to 30% for 1.5 TeV squarks at a centre-of-mass energy of 7 TeV.
We present the hard matching coefficients for squark and gluino hadroproduction. The hard matching coefficients follow from the next-to-leading order cross section near threshold and are an important ingredient for performing threshold resummation at next-to-next-to-leading logarithmic accuracy. We discuss the calculation, list the analytical results and study the numerical impact of these corrections. We find that the impact of the hard matching coefficients can be considerable, with the largest effect observed for final states involving gluinos.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.