We develop a quantitative single cell-based mathematical model for multi-cellular tumor spheroids (MCTS) of SK-MES-1 cells, a non-small cell lung cancer (NSCLC) cell line, growing under various nutrient conditions: we confront the simulations performed with this model with data on the growth kinetics and spatial labeling patterns for cell proliferation, extracellular matrix (ECM), cell distribution and cell death. We start with a simple model capturing part of the experimental observations. We then show, by performing a sensitivity analysis at each development stage of the model that its complexity needs to be stepwise increased to account for further experimental growth conditions. We thus ultimately arrive at a model that mimics the MCTS growth under multiple conditions to a great extent. Interestingly, the final model, is a minimal model capable of explaining all data simultaneously in the sense, that the number of mechanisms it contains is sufficient to explain the data and missing out any of its mechanisms did not permit fit between all data and the model within physiological parameter ranges. Nevertheless, compared to earlier models it is quite complex i.e., it includes a wide range of mechanisms discussed in biological literature. In this model, the cells lacking oxygen switch from aerobe to anaerobe glycolysis and produce lactate. Too high concentrations of lactate or too low concentrations of ATP promote cell death. Only if the extracellular matrix density overcomes a certain threshold, cells are able to enter the cell cycle. Dying cells produce a diffusive growth inhibitor. Missing out the spatial information would not permit to infer the mechanisms at work. Our findings suggest that this iterative data integration together with intermediate model sensitivity analysis at each model development stage, provide a promising strategy to infer predictive yet minimal (in the above sense) quantitative models of tumor growth, as prospectively of other tissue organization processes. Importantly, calibrating the model with two nutriment-rich growth conditions, the outcome for two nutriment-poor growth conditions could be predicted. As the final model is however quite complex, incorporating many mechanisms, space, time, and stochastic processes, parameter identification is a challenge. This calls for more efficient strategies of imaging and image analysis, as well as of parameter identification in stochastic agent-based simulations.
A new framework for estimation of lumped (for instance, Windkessel) model parameters from uncertain clinical measurements is presented. The ultimate aim is to perform patient-specific haemodynamic analysis. This framework is based on sensitivity analysis tools and the sequential estimation approach of the unscented Kalman filter. Sensitivity analysis and parameter estimation are performed in lumped parameter models, which act as reduced order surrogates of the 3D domain for haemodynamic analysis. While the goal of sensitivity analysis is to assess potential identifiability problems, the unscented Kalman filter estimation leads to parameter estimates based on clinical measurements and modelling assumptions. An application of such analysis and parameter estimation methodology is demonstrated for synthetic and real data. Equality constraints on various physiological parameters are enforced. Since the accuracy of the Windkessel parameter estimates depends on the lumped parameter representativeness, the latter is iteratively improved by running few 3D simulations while simultaneously improving the former. Such a method is applied on a patient-specific aortic coarctation case. Less than 3% and 9% errors between the clinically measured quantities and 3D simulation results for rest and stress are obtained, respectively. Knowledge on how these Windkessel parameters change from rest to stress can thus be learned by such an approach. Lastly, it is demonstrated that the proposed approach is capable of dealing with a wide variety of measurements and cases where the pressure and flow clinical measurements are not taken simultaneously.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.