Purpose: Hepatocellular carcinoma (HCC) displays particular resistance to conventional cytostatic agents. Alternative treatment strategies focus on novel substances exhibiting antineoplastic and/or immunomodulatory activity enhancing for example natural killer (NK) cell antitumor reactivity. However, tumor-associated ligands engaging activating NK cell receptors are largely unknown. Exceptions are NKG2D ligands (NKG2DL) of the MHC class I-related chain and UL16-binding protein families, which potently stimulate NK cell responses. We studied the consequences of proteasome inhibition with regard to direct and NK cell^mediated effects against HCC. Experimental Design: Primary human hepatocytes (PHH) from different donors, hepatoma cell lines, and NK cells were exposed to Bortezomib. Growth and viability of the different cells, and immunomodulatory effects including alterations of NKG2DL expression on hepatoma cells, specific induction of NK cell cytotoxicity and IFN-g production were investigated. Results: Bortezomib treatment inhibited hepatoma cell growth with IC 50 values between 2.4 and 7.7 nmol/L. These low doses increased MICA/B mRNA levels, resulting in an increase of total and cell surface protein expression in hepatoma cells, thus stimulating cytotoxicity and IFN-g production of cocultured NK cells. Importantly, although NK cell IFN-g production was concentration-dependently reduced, low-dose Bortezomib neither induced NKG2DL expression or cell death in PHH nor altered NK cell cytotoxicity. Conclusions: Low-dose Bortezomib mediates a specific dual antitumor effect in HCC by inhibiting tumor cell proliferation and priming hepatoma cells for NK cell antitumor reactivity. Our data suggest that patients with HCC may benefit from Bortezomib treatment combined with immunotherapeutic approaches such as adoptive NK cell transfer taking advantage of enhanced NKG2D-mediated antitumor immunity.
The oncolytic potential of measles vaccine virus (MeV) has been demonstrated in several tumor entities. Here, we investigated the susceptibility of eight sarcoma cell lines to MeV-mediated oncolysis and found five to be susceptible, whereas three proved to be resistant. In the
Bifunctional SuperCD suicide gene expression is highly effective in a rat hepatoma model, thereby significantly improving both the therapeutic index and the efficacy of hepatocellular carcinoma killing by fluorocytosine.
Precision-cut liver tissue slices (PCLS) have been used for decades to study pharmacological metabolism as well as toxicology and efficacy of novel substances on primary material under standardized conditions. Slicing of primary liver tissue has been done using different slicing machines. Since there has been great variability in the results, we sought to compare the reproducibility of tissue slices generated using the newly developed Leica VT1200 S vibrating blade microtome with Vibrocheck (LV) and the Krumdieck tissue slicer (KD) which has been the standard apparatus for this application so far. Liver samples from five different species (human, pig, cattle, rat, mouse) were cut and the reproducibility of slice thickness was analyzed by cross sectioning the PCLS. The quality of the sliced tissue was determined via measurement of the ATP content. As a result, we found an improved accuracy and reproducibility of rat, mouse and human tissue slices using the new Leica vibrating blade microtome.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.