Blood oxygenation level dependence (BOLD) imaging under either hypercapnia or hyperoxia has been used to study neuronal activation and for assessment of various brain pathologies. We evaluated the benefit of a combined protocol of BOLD imaging during both hyperoxic and hypercapnic challenges (termed hemodynamic response imaging (HRI)). Nineteen healthy controls and seven patients with primary brain tumors were included: six with glioblastoma (two newly diagnosed and four with recurrent tumors) and one with atypical-meningioma. Maps of percent signal intensity changes (ΔS) during hyperoxia (carbogen; 95%O2+5%CO2) and hypercapnia (95%air+5%CO2) challenges and vascular reactivity mismatch maps (VRM; voxels that responded to carbogen with reduced/absent response to CO2) were calculated. VRM values were measured in white matter (WM) and gray matter (GM) areas of healthy subjects and used as threshold values in patients. Significantly higher response to carbogen was detected in healthy subjects, compared to hypercapnia, with a GM/WM ratio of 3.8 during both challenges. In patients with newly diagnosed/treatment-naive tumors (n = 3), increased response to carbogen was detected with substantially increased VRM response (compared to threshold values) within and around the tumors. In patients with recurrent tumors, reduced/absent response during both challenges was demonstrated. An additional finding in 2 of 4 patients with recurrent glioblastoma was a negative response during carbogen, distant from tumor location, which may indicate steal effect. In conclusion, the HRI method enables the assessment of blood vessel functionality and reactivity. Reference values from healthy subjects are presented and preliminary results demonstrate the potential of this method to complement perfusion imaging for the detection and follow up of angiogenesis in patients with brain tumors.
Lynch Syndrome is caused by mutations in DNA mismatch repair genes. Diagnosis is not always trivial and may be costly. Information regarding incidence, genotype-phenotype correlation, spectrum of mutations and genes involved in specific populations facilitate the diagnostic process and contribute to clinical work-up. To report gene distribution, mutations detected and co-occurrence of related syndromes in a cohort of Ashkenazi Jews in Israel. Patients were identified in dedicated high risk clinics in 3 medical centers in Israel. Diagnostic process followed a multi-step scheme. It included testing for founder mutations, tumor testing, gene sequencing and MLPA. Lynch Syndrome was defined either by positive mutation testing, or by clinical criteria and positive tumor analysis. We report a cohort of 75 Ashkenazi families suspected of Lynch Syndrome. Mutations were identified in 51/75 (68%) families: 38 in MSH2, 9 in MSH6, and 4 in MLH1. 37/51 (73%) of these families carried one of the 3 'Ashkenazi' founder mutations in MSH2 or MSH6. Each of the other 14 families carried a private mutation. 3 (6%) were large deletions. Only 20/51 (39%) families were Amsterdam Criteria positive; 42 (82%) were positive for the Bethesda guidelines and 9 (18%) did not fulfill any Lynch Syndrome criteria. We report C-MMRD and co-occurrence of BRCA and Lynch Syndrome in our cohort. Mutation spectra and gene distribution among Ashkenazi Jews are unique. Three founder Lynch Syndrome mutations are found in 73% families with known mutations. Among the three, MSH2 and MSH6 are the most common. These features affect the phenotype, the diagnostic process, risk estimation, and genetic counseling.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.