Plasma proteins such as early complement components and IgM are involved in the removal of late apoptotic or secondary necrotic (sn) cells. We have recently described how a plasma protease that could be inhibited by the protease inhibitor aprotinin was essential to remove nucleosomes from sn cells. An obvious candidate, plasmin, did indeed have nucleosome-releasing factor (NRF) activity. However, recalcified plasma (r-plasma) retained its NRF activity after plasminogen depletion, which suggests the existence of another protease responsible for NRF activity in plasma. In this study we have used size-exclusion and anion-exchange chromatography to purify the protease responsible for NRF activity in plasma. SDS-PAGE analysis of chromatography fractions containing NRF activity revealed a protein band corresponding with NRF activity. Sequence analysis showed this band to be factor VII-activating protease (FSAP). We developed monoclonal antibodies to FSAP and were able to completely inhibit NRF activity in plasma with monoclonal antibodies to FSAP. Using affinity chromatography we were able to purify single-chain (sc) FSAP from r-plasma. Purified scFSAP efficiently removes nucleosomes from sn cells. We report that factor VII-activating protease may function in cellular homeostasis by catalyzing the release of nucleosomes from secondary necrotic cells.
Human serum amyloid P component (SAP) is a glycoprotein structurally belonging to the pentraxin family of proteins, which has a characteristic pentameric organization. Mice with a targeted deletion of the SAP gene develop antinuclear Abs, which was interpreted as evidence for a role of SAP in controlling the degradation of chromatin. However, in vitro SAP also can bind to phosphatidylethanolamine, a phospholipid which in normal cells is located mainly in the inner leaflet of the cell membrane, to be translocated to the outer leaflet of the cell membrane during a membrane flip-flop. We hypothesized that SAP, because of its specificity for phosphatidylethanolamine, may bind to apoptotic cells independent of its nuclear binding. Calcium-dependent binding of SAP to early, nonpermeable apoptotic Jurkat, SKW, and Raji cells was indeed observed. Experiments with flip-flopped erythrocytes confirmed that SAP bound to early apoptotic cells via exposed phosphatidylethanolamine. Binding of SAP was stronger to late, permeable apoptotic cells. Experiments with enucleated neutrophils, with DNase/RNase treatment of late apoptotic Jurkat cells, and competition experiments with histones suggested that binding of SAP to late apoptotic cells was largely independent of chromatin. Confocal laser microscopic studies indeed suggested that SAP bound to these apoptotic cells mainly via the blebs. Thus, this study shows that SAP binds to apoptotic cells already at an early stage, which raises the possibility that SAP is involved in dealing with apoptotic cells in vivo.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.