A central motivation for the development of x-ray free-electron lasers has been the prospect of timeresolved single-molecule imaging with atomic resolution. Here, we show that x-ray photoelectron diffraction-where a photoelectron emitted after x-ray absorption illuminates the molecular structure from within-can be used to image the increase of the internuclear distance during the x-ray-induced fragmentation of an O 2 molecule. By measuring the molecular-frame photoelectron emission patterns for a two-photon sequential K-shell ionization in coincidence with the fragment ions, and by sorting the data as a function of the measured kinetic energy release, we can resolve the elongation of the molecular bond by approximately 1.2 a.u. within the duration of the x-ray pulse. The experiment paves the road toward timeresolved pump-probe photoelectron diffraction imaging at high-repetition-rate x-ray free-electron lasers.
Following structural dynamics in real time is a fundamental goal towards a better understanding of chemical reactions. Recording snapshots of individual molecules with ultrashort exposure times is a key ingredient towards this goal, as atoms move on femtosecond (10−15 s) timescales. For condensed-phase samples, ultrafast, atomically resolved structure determination has been demonstrated using X-ray and electron diffraction. Pioneering experiments have also started addressing gaseous samples. However, they face the problem of low target densities, low scattering cross sections and random spatial orientation of the molecules. Therefore, obtaining images of entire, isolated molecules capturing all constituents, including hydrogen atoms, remains challenging. Here we demonstrate that intense femtosecond pulses from an X-ray free-electron laser trigger rapid and complete Coulomb explosions of 2-iodopyridine and 2-iodopyrazine molecules. We obtain intriguingly clear momentum images depicting ten or eleven atoms, including all the hydrogens, and thus overcome a so-far impregnable barrier for complete Coulomb explosion imaging—its limitation on molecules consisting of three to five atoms. In combination with state-of-the-art multi-coincidence techniques and elaborate theoretical modelling, this allows tracing ultrafast hydrogen emission and obtaining information on the result of intramolecular electron rearrangement. Our work represents an important step towards imaging femtosecond chemistry via Coulomb explosion.
The photoelectron circular dichroism (PECD) of the O 1s-photoelectrons of trifluoromethyloxirane (TFMOx) is studied experimentally and theoretically for different photoelectron kinetic energies. The experiments were performed employing circularly polarized synchrotron...
Compton scattering is one of the fundamental interaction processes of light with matter. When discovered [1], it was described as a billiard-type collision of a photon 'kicking' a quasi-free electron. With decreasing photon energy, the maximum possible momentum transfer becomes so small that the corresponding energy falls below the binding energy of the electron. In this regime, ionization by Compton scattering becomes an intriguing quantum phenomenon. Here, we report on a kinematically complete experiment studying Compton scattering o helium atoms in that regime. We determine the momentum correlations of the electron, the recoiling ion and the scattered photon in a coincidence experiment based on cold target recoil ion momentum spectroscopy, nding that electrons are not only emitted in the direction of the momentum transfer, but that there is a second peak of ejection to the backward direction. This nding links Compton scattering to processes such as ionization by ultrashort optical pulses [2], electron impact ionization [3,4], ion impact ionization [5,6], and neutron scattering [7], where similar momentum patterns occur.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.