Noonan and LEOPARD syndromes are developmental disorders with overlapping features, including cardiac abnormalities, short stature and facial dysmorphia. Increased RAS signaling owing to PTPN11, SOS1 and KRAS mutations causes approximately 60% of Noonan syndrome cases, and PTPN11 mutations cause 90% of LEOPARD syndrome cases. Here, we report that 18 of 231 individuals with Noonan syndrome without known mutations (corresponding to 3% of all affected individuals) and two of six individuals with LEOPARD syndrome without PTPN11 mutations have missense mutations in RAF1, which encodes a serine-threonine kinase that activates MEK1 and MEK2. Most mutations altered a motif flanking Ser259, a residue critical for autoinhibition of RAF1 through 14-3-3 binding. Of 19 subjects with a RAF1 mutation in two hotspots, 18 (or 95%) showed hypertrophic cardiomyopathy (HCM), compared with the 18% prevalence of HCM among individuals with Noonan syndrome in general. Ectopically expressed RAF1 mutants from the two HCM hotspots had increased kinase activity and enhanced ERK activation, whereas non-HCM-associated mutants were kinase impaired. Our findings further implicate increased RAS signaling in pathological cardiomyocyte hypertrophy.
Analysis of 786 NF1 mutation-positive subjects with clinical diagnosis of neurofibromatosis type 1 (NF1) allowed to identify the heterozygous c.5425C4T missense variant (p.Arg1809Cys) in six (0.7%) unrelated probands (three familial and three sporadic cases), all exhibiting a mild form of disease. Detailed clinical characterization of these subjects and other eight affected relatives showed that all individuals had multiple cafè-au-lait spots, frequently associated with skinfold freckling, but absence of discrete cutaneous or plexiform neurofibromas, Lisch nodules, typical NF1 osseous lesions or symptomatic optic gliomas. Facial features in half of the individuals were suggestive of Noonan syndrome. Our finding and revision of the literature consistently indicate that the c.5425C4T change is associated with a distinctive, mild form of NF1, providing new data with direct impact on genetic counseling and patient management.
Marfan Syndrome (MFS) is an autosomal dominant disorder of the connective tissue due to mutations of Fibrillin-1 gene (FBN1) in more than 90% of cases and Transforming Growth Factor-Beta-Receptor2 gene (TGFB2R) in a minority of cases. Genotyping is relevant for diagnosis and genotype-phenotype correlations. We describe the FBN1 genotypes and related phenotypes of 81 patients who were referred to our attention for MFS or Marfan-like phenotypes. Patients underwent multidisciplinary pertinent evaluation in the adult or paediatric setting, according to their age. The diagnosis relied on Ghent criteria. To optimise DHPLC analysis of the FBN1 gene, all coding regions of the gene were directly sequenced in 19 cases and 10 controls: heterozygous amplicons were used as true positives. DHPLC sensitivity was 100%. Then, DHPLC was used to screen 62 other cases. We identified 74 FBN1 mutations in 81 patients: 64 were novel and 17 known. Of the 81 mutations, 41 were missense (50.6%), 27, either nonsense or frameshift mutations and predicted a premature termination codon (PTC) (33%), 11 affected splice sites (13.6%), and two predicted in-frame deletions (2.5%). Most mutations (67.9%) occurred in cbEGF-like modules. Genotype was clinically relevant for early diagnosis and conclusion of the diagnostic work-up in patients with incomplete or atypical phenotypes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.