A growing body of evidence suggests that maternal undernutrition sensitizes the offspring to the development of energy balance metabolic disorders such as type 2 diabetes, dyslipidemia, and obesity. The present study aimed at examining the impact of maternal undernutrition on leptin plasma levels in newborn male rats and on the arcuate nucleus proopiomelanocortin (POMC) and neuropeptide Y (NPY) neurons that are major leptin targets. Using a model of perinatal maternal 50% food-restricted diet (FR50) in the rat, we evaluated leptin plasma levels and hypothalamic POMC and NPY gene expression from postnatal day (PND) 4 to PND30 in both control and FR50 offspring. In control rats, a postnatal peak of plasma leptin was observed between PND4 and PND14 that reached a maximal value at PND10 (5.17 ؎ 0.53 ng/ml), whereas it was dramatically reduced in FR50 pups with the higher concentration at PND7 (0.93 ؎ 0.23 ng/ml). In FR50 animals, using semiquantitative RT-PCR and in situ hybridization, we showed that the hypothalamic POMC mRNA level was decreased from PND14 until PND30, whereas NPY gene expression was not significantly modified. In PND21 FR50 animals, we observed strikingly reduced immunoreactive -endorphin nerve fibers projecting to the hypothalamic paraventricular nucleus without affecting NPY projections. Our data showed that maternal undernutrition drastically reduces the postnatal surge of plasma leptin, disturbing particularly the hypothalamic wiring as well as the gene expression of the anorexigenic POMC neurons in male rat pups. These alterations might contribute to the adult metabolic disorders resulting from perinatal growth retardation. (Endocrinology 149: 470 -475, 2008)
-Several studies have shown that maternal undernutrition leading to low birth weight predisposes offspring to the development of metabolic pathologies such as obesity. Using a model of prenatal maternal 70% food restriction diet (FR30) in rat, we evaluated whether postweaning high-fat (HF) diet would amplify the phenotype observed under standard diet. We investigated biological parameters as well as gene expression profile focusing on white adipose tissues (WAT) of adult offspring. FR30 procedure does not worsen the metabolic syndrome features induced by HF diet. However, FR30HF rats displayed catch-up growth to match the body weight of adult control HF animals, suggesting an increase of adiposity while showing hyperleptinemia and a blunted increase of corticosterone. Using quantitative RT-PCR array, we demonstrated that FR30HF rats exhibited leptin and Ob-Rb as well as many peptide precursor and receptor gene expression variations in WAT. We also showed that the expression of genes involved in adipogenesis was modified in FR30HF animals in a depot-specific manner. We observed an opposite variation of STAT3 phosphorylation levels, suggesting that leptin sensitivity is modified in WAT adult FR30 offspring. We demonstrated that 11-HSD1, 11-HSD2, GR, and MR genes are coexpressed in WAT and that FR30 procedure modifies gene expression levels, especially under HF diet.
demiological studies suggest that maternal undernutrition predisposes the offspring to development of energy balance metabolic pathologies in adulthood. Using a model of a prenatal maternal 70% foodrestricted diet (FR30) in rats, we evaluated peripheral parameters involved in nutritional regulation, as well as the hypothalamic appetite-regulatory system, in nonfasted and 48-h-fasted adult offspring. Despite comparable glycemia in both groups, mild glucose intolerance, with a defect in glucose-induced insulin secretion, was observed in FR30 animals. They also exhibited hyperleptinemia, despite similar visible fat deposits. Using semiquantitative RT-PCR, we observed no basal difference of hypothalamic proopiomelanocortin (POMC) and neuropeptide Y (NPY) gene expression, but a decrease of the OB-Rb and an increase of insulin receptor mRNA levels, in FR30 animals. These animals also exhibited basal hypercorticosteronemia and a blunted increase of corticosterone in fasted compared with control animals. After fasting, FR30 animals showed no marked reduction of POMC mRNA levels or intensity of -endorphin-immunoreactive fiber projections. By contrast, NPY gene expression and immunoreactive fiber intensity increased. FR30 rats also displayed subtle alterations of food intake: body weight-related food intake was higher and light-dark phase rhythm and refeeding time course were modified after fasting. At rest, in the morning, hyperinsulinemia and a striking increase in the number of c-Fos-containing cells in the arcuate nucleus were observed. About 30% of the c-Fos-expressing cells were POMC neurons. Our data suggest that maternal undernutrition differently programs the long-term appetite-regulatory system of offspring, especially the response of POMC neurons to energy status and food intake rhythm. maternal undernutrition; appetite programming; hypothalamus; arcuate nucleus; feeding rhythm IN ADDITION TO LIFESTYLE and dietary factors, increasing evidence suggests that the origin of some metabolic disorders that manifest in adult life may be traced to development. Indeed, epidemiological studies have shown that adverse environmental factors leading to intrauterine growth retardation (IUGR) and low birth weight may predispose individuals to later onset of energy balance metabolic pathology development (9,17,18,20,29). This has led to the concept of the developmental origin of adult diseases, also called "fetal programming," or the Barker hypothesis (4). As illustrated by the Dutch Famine Study, offspring of women exposed to famine during early pregnancy displayed an increased risk of adiposity and glucose intolerance, as well as hypertension, later in life (41).To obtain insights into the underlying mechanisms, numerous animal models, including maternal undernutrition, have been developed to promote intrauterine fetal programming (47,56). These studies confirmed that impaired fetal development has long-term metabolic consequences, sensitizing the offspring to hyperphagia and obesity, particularly when they are fed a hyperca...
The effects of maternal 50% food restriction (FR) during the last week of gestation and/or lactation on pituitary-gonadal axis (at birth and weaning), on circulating levels of leptin (at weaning), and on the onset of puberty have been determined in rats at birth and at weaning. Maternal FR during pregnancy has no effect at term on the litter size, on the basal level of testosterone in male pups, and on the drastic surge of circulating testosterone that occurs 2 h after birth. At weaning, similar retardation of body growth is observed in male and female pups from mothers exposed to FR. This undernutrition induces the most drastic effects when it is performed during both gestation and lactation or during lactation alone. Drastic retardation of testicle growth with reduction of cross-sectional area and intratubular lumen of the seminiferous tubules is observed in male pups from mothers exposed to undernutrition during both gestation and lactation or during lactation alone. Maternal FR during the perinatal period reduces circulating levels of FSH in male pups without affecting LH and testosterone concentrations. Maternal FR does not affect circulating levels of LH, estradiol, and progesterone in female pups. Female pups from mothers exposed to FR during both gestation and lactation show a significant increase of plasma FSH as well as a drastic retardation of ovarian growth. The follicular population was also altered. The number of antral follicles of small size (vesicular follicles) was increased, although the number of antral follicles of large size (graafian follicles) was reduced. Maternal FR occurring during both late gestation and lactation (male and female pups), during lactation alone (male and female pups), or during late gestation (female pups) induces a drastic reduction of plasma leptin and fat mass in pups at weaning. The onset of puberty is delayed in pups of both sexes from mothers exposed to FR during lactation and during both gestation and lactation. In conclusion, these data demonstrate that a perinatal growth retardation induced by maternal FR has long-term consequences on both size and histology of the genitals, on plasma gonadotropins and leptin levels, on fat stores at weaning, and on the onset of puberty.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.