The auditory inner hair cell (IHC) ribbon synapse operates with an exceptional temporal precision and maintains a high level of neurotransmitter release. However, the molecular mechanisms underlying IHC synaptic exocytosis are largely unknown. We studied otoferlin, a predicted C2-domain transmembrane protein, which is defective in a recessive form of human deafness. We show that otoferlin expression in the hair cells correlates with afferent synaptogenesis and find that otoferlin localizes to ribbon-associated synaptic vesicles. Otoferlin binds Ca(2+) and displays Ca(2+)-dependent interactions with the SNARE proteins syntaxin1 and SNAP25. Otoferlin deficient mice (Otof(-/-)) are profoundly deaf. Exocytosis in Otof(-/-) IHCs is almost completely abolished, despite normal ribbon synapse morphogenesis and Ca(2+) current. Thus, otoferlin is essential for a late step of synaptic vesicle exocytosis and may act as the major Ca(2+) sensor triggering membrane fusion at the IHC ribbon synapse.
contributed equally to this work Deaf-blindness in three distinct genetic forms of Usher type I syndrome (USH1) is caused by defects in myosin VIIa, harmonin and cadherin 23. Despite being critical for hearing, the functions of these proteins in the inner ear remain elusive. Here we show that harmonin, a PDZ domain-containing protein, and cadherin 23 are both present in the growing stereocilia and that they bind to each other. Moreover, we demonstrate that harmonin b is an F-actin-bundling protein, which is thus likely to anchor cadherin 23 to the stereocilia micro®laments, thereby identifying a novel anchorage mode of the cadherins to the actin cytoskeleton. Moreover, harmonin b interacts directly with myosin VIIa, and is absent from the disorganized hair bundles of myosin VIIa mutant mice, suggesting that myosin VIIa conveys harmonin b along the actin core of the developing stereocilia. We propose that the shaping of the hair bundle relies on a functional unit composed of myosin VIIa, harmonin b and cadherin 23 that is essential to ensure the cohesion of the stereocilia.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.