Global warming promotes soil calcification and salinization processes. As a result, soil phosphorus (P) is becoming deficient in arid and semiarid areas throughout the world. In this pot study, we evaluated the potential of phosphate-solubilizing bacteria (PSB) for enhancing the growth and P uptake in maize under varying levels of lime (4.8%, 10%, 15% and 20%) and additional P supplements (farmyard manure, poultry manure, single super phosphate and rock phosphate) added at the rate of 45 mg P2O5 kg−1. Inoculation and application of P as organic manures (Poultry and farm yard manures) improved maize growth and P uptake compared to the control and soils with P applied from mineral sources. Liming adversely affected crop growth, but the use of PSB and organic manure significantly neutralized this harmful effect. Mineral P sources combined with PSB were as effective as the organic sources alone. Furthermore, while single supper phosphate showed better results than Rock phosphate, the latter performed comparably upon PSB inoculation. Thus, PSB plus P application as organic manures is an eco-friendly option to improve crop growth and P nutrition in a calcareous soil under changing climate.
Phosphate-solubilizing bacteria (PSB) reduce the negative effects of soil calcification on soil phosphorus (P) nutrition. In this incubation study, we explored the ability of PSB (control and inoculated) to release P from different P sources [single super phosphate (SSP), rock phosphate (RP), poultry manure (PM) and farm yard manure (FYM)] with various soil lime contents (4.78, 10, 15 and 20%) in alkaline soil. PSB inoculation progressively enriched Olsen extractable P from all sources compared to the control over the course of 56 days; however, this increase was greater from organic sources (PM and FYM) than from mineral P sources (SSP and RP). Lime addition to the soil decreased bioavailable P, but this effect was largely neutralized by PSB inoculation. PSB were the most viable in soil inoculated with PSB and amended with organic sources, while lime addition decreased PSB survival. Our findings imply that PSB inoculation can counteract the antagonistic effect of soil calcification on bioavailable P when it is applied using both mineral and organic sources, although organic sources support this process more efficiently than do mineral P sources. Therefore, PSB inoculation combined with organic manure application is one of the best options for improving soil P nutrition.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.