Fleshy fruits have evolved independently in Syzygieae and Myrteae, and this is accompanied by exceptional diversification rate shifts in both instances, suggesting that the evolution of fleshy fruits is a key innovation for rainforest Myrtaceae. Noting the scale dependency of this hypothesis, more complex explanations may be required to explain diversification rate shifts occurring within the fleshy-fruited tribes, and the suggested phylogenetic hypothesis provides an appropriate framework for this undertaking.
Myrteae (c. 2500 species; 51 genera) is the largest tribe of Myrtaceae and an ecologically important groups of angiosperms in the Neotropics. Systematic relationships in Myrteae are complex, hindering conservation initiatives and jeopardizing evolutionary modelling. A well-supported and robust phylogenetic hypothesis was here targeted towards a comprehensive understanding of the relationships within the tribe. The resultant topology was used as a base for key evolutionary analyses such as age estimation, historical biogeography and diversification rate patterns. One nuclear (ITS) and seven chloroplast (psbA-trnH, matK, ndhF, trnl-trnF, trnQ-rps16, rpl16 and rpl32-trnL) DNA regions for 115 taxa representing 46 out of the 51 genera in the tribe were accessed and analysed using maximum likelihood and Bayesian inference tools for phylogenetic reconstruction. Dates of diversification events were estimated and contrasted using two distinct fossil sets (macro and pollen) in BEAST. The subsequent dated phylogenies were compared and analysed for biogeographical patterns using BioGeoBEARS and diversification rates using BAMM. Myrteae phylogeny presents strong statistical support for three major clades within the tribe: Australasian group, Myrtus group and Main Neotropical Lineage. Dating results from calibration using macrofossil are an average of 20 million years older and show an early Paleocene origin of Myrteae, against a mid-Eocene one from the pollen fossil calibration. Biogeographic analysis shows the origin of Myrteae in Zealandia in both calibration approaches, followed by a widespread distribution throughout the still-linked Gondwana continents and diversification of Neotropical endemic lineages by later vicariance. Best configuration shift indicates three points of acceleration in diversification rates, all of them occurring in the Main Neotropical Lineage. Based on the reconstructed topology, several new taxonomic placements were recovered, including: the relative position of Myrtus communis, the placement of the Blepharocalyx group, the absence of generic endemism in the Caribbean, and the paraphyletism of the former Pimenta group. Distinct calibration approaches affect biogeography interpretation, increasing the number of necessary long distance dispersal events in the topology with older nodes. It is hypothesised that biological intrinsic factors such as modifications of embryo type and polyploidy might have played a role in accelerating shifts of diversification rates in Neotropical lineages. Future perspectives include formal subtribal classification, standardization of fossil calibration approaches and better links between diversification shifts and trait evolution.
Abstract—A new classification of the predominantly Neotropical tribe Myrteae is proposed to replace Berg’s three traditional subtribes, the Myrciinae, Eugeniinae, and Myrtinae. Nine subtribes are here proposed that are supported by molecular and morphological data. In addition to the three traditionally recognized but modified here, subtribe Pimentinae (originally described as Pimentoideae) is reinstated and five new subtribes are proposed: Blepharocalycinae, Decasperminae, Luminae, Pliniinae, and Ugninae. A key to the nine subtribes is followed by descriptions of each, listing genera included, approximate species numbers, general distribution patterns, and notes. The genera Feijoa O. Berg and Temu O. Berg are reinstated. Morphological structures of importance for classification of Myrteae subtribes are illustrated.
Aim The primary objectives of this study were (1) to assess, in the light of palaeoecological reconstruction, the climate stability hypothesis used by evolutionary biologists to explain high diversity in historically stable areas, and (2) to identify the response mechanisms of a tropical rain forest microrefugium to climatic variability. Location North-eastern Brazil, Serra de Maranguape. Methods Vegetation and climatic changes were reconstructed using a pollen record in a sediment core from a forest hollow, and the chronology was based on accelerator mass spectrometry radiocarbon analyses. Results Past vegetation dynamics consisted of three main forest types, shown by major compositional changes in rain forest assemblages between 5000 and 1000 cal. yr bp. Dense ombrophilous forest was abruptly replaced by heliophilous early successional tree taxa at 4275 cal. yr bp. These early successional tree taxa were established over a period of c. 100 years, and their dominance lasted for c. 750 years and was associated with dry conditions until 3525 cal. yr bp. Subsequently, the expansion of secondary successional tree taxa over a period of c. 550 years enabled the recovery of ombrophilous forest. Main conclusions The vegetation changes in the Serra de Maranguape provide evidence for the high sensitivity of this rain forest microrefugium to climatic variability on a multidecadal to millennial time-scale during the mid- to late Holocene. Despite the substantial compositional and climatic changes, this microrefugium apparently was continuously forested and responded to climatic instability by recruiting key species to its highly diverse stock. This evidence helps to address the joint concerns of evolutionary biologists and palaeoecologists regarding how forests can persist during periods of climatic variability by showing that some tropical regions can remain continuously forested despite reorganization during abrupt and short-term climatic changes. (Résumé d'auteur
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.