Abstract. Accurate assessment of anthropogenic carbon dioxide (CO 2 ) emissions and their redistribution among the atmosphere, ocean, and terrestrial biosphere -the "global carbon budget" -is important to better understand the global carbon cycle, support the development of climate policies, and project future climate change. Here we describe data sets and methodology to quantify the five major components of the global carbon budget and their uncertainties. CO 2 emissions from fossil fuels and industry (E FF ) are based on energy statistics and cement production data, respectively, while emissions from land-use change (E LUC ), mainly deforestation, are based on land-cover change data and bookkeeping models. The global atmospheric CO 2 concentration is measured directly and its rate of growth (G ATM ) is computed from the annual changes in concentration. The ocean CO 2 sink (S OCEAN ) and terrestrial CO 2 sink (S LAND ) are estimated with global process models constrained by observations. The resulting carbon budget imbalance (B IM ), the difference between the estimated total emissions and the estimated changes in the atmosphere, ocean, and terrestrial biosphere, is a measure of imperfect data and understanding of the contemporary carbon cycle. All uncertainties are reported as ±1σ . For the last decade available (2007)(2008)(2009)(2010)(2011)(2012)(2013)(2014)(2015)(2016), E FF was 9.4 ± 0.5 GtC yr −1 , E LUC 1.3 ± 0.7 GtC yr −1 , G ATM 4.7 ± 0.1 GtC yr −1 , S OCEAN 2.4 ± 0.5 GtC yr −1 , and S LAND 3.0 ± 0.8 GtC yr −1 , with a budget imbalance B IM of 0.6 GtC yr −1 indicating overestimated emissions and/or underestimated sinks. For year 2016 alone, the growth in E FF was approximately zero and emissions remained at 9.9 ± 0.5 GtC yr −1 . Also for 2016, E LUC was 1.3 ± 0.7 GtC yr −1 , G ATM was 6.1 ± 0.2 GtC yr −1 , S OCEAN was 2.6 ± 0.5 GtC yr −1 , and S LAND was 2.7 ± 1.0 GtC yr −1 , with a small B IM of −0.3 GtC. G ATM continued to be higher in 2016 compared to the past decade (2007)(2008)(2009)(2010)(2011)(2012)(2013)(2014)(2015)(2016), reflecting in part the high fossil emissions and the small S LAND consistent with El Niño conditions. The global atmospheric CO 2 concentration reached 402.8 ± 0.1 ppm averaged over 2016. For 2017, preliminary data for the first 6-9 months indicate a renewed growth in E FF of +2.0 % (range of 0.8 to 3.0 %) based on national emissions projections for China, USA, and India, and projections of gross domestic product (GDP) corrected for recent changes in the carbon intensity of the economy for the rest of the world. This living data update documents changes in the methods and data sets used in this new global carbon budget compared with previous publications of this data set (Le Quéré et al
Accurate assessment of anthropogenic carbon dioxide (CO2) emissions and their redistribution among the atmosphere, ocean, and terrestrial biosphere – the "global carbon budget" – is important to better understand the global carbon cycle, support the development of climate policies, and project future climate change. Here we describe data sets and methodology to quantify the five major components of the global carbon budget and their uncertainties. CO2 emissions from fossil fuels and industry (EFF) are based on energy statistics and cement production data, respectively, while emissions from land-use change (ELUC), mainly deforestation, are based on land-cover change data and bookkeeping models. The global atmospheric CO2 concentration is measured directly and its rate of growth (GATM) is computed from the annual changes in concentration. The ocean CO2 sink (SOCEAN) and terrestrial CO2 sink (SLAND) are estimated with global process models constrained by observations. The resulting carbon budget imbalance (BIM), the difference between the estimated total emissions and the estimated changes in the atmosphere, ocean, and terrestrial biosphere, is a measure of our imperfect data and understanding of the contemporary carbon cycle. All uncertainties are reported as ±1σ. For the last decade available (2007–2016), EFF was 9.4 ± 0.5 GtC yr−1, ELUC 1.3 ± 0.7 GtC yr−1, GATM 4.7 ± 0.1 GtC yr−1, SOCEAN 2.4 ± 0.5 GtC yr−1, and SLAND 3.0 ± 0.8 GtC yr−1, with a budget imbalance BIM of 0.6 GtC yr−1 indicating overestimated emissions and/or underestimated sinks. For year 2016 alone, the growth in EFF was approximately zero and emissions remained at 9.9 ± 0.5 GtC yr−1. Also for 2016, ELUC was 1.3 ± 0.7 GtC yr−1, GATM was 6.1 ± 0.2 GtC yr−1, SOCEAN was 2.6 ± 0.5 GtC yr−1 and SLAND was 2.7 ± 1.0 GtC yr−1, with a small BIM of −0.3 GtC. GATM continued to be higher in 2016 compared to the past decade (2007–2016), reflecting in part the higher fossil emissions and smaller SLAND for that year consistent with El Niño conditions. The global atmospheric CO2 concentration reached 402.8 ± 0.1 ppm averaged over 2016. For 2017, preliminary data indicate a renewed growth in EFF of +2.0 % (range of 0.8 % to 3.0 %) based on national emissions projections for China, USA, and India, and projections of Gross Domestic Product corrected for recent changes in the carbon intensity of the economy for the rest of the world. For 2017, initial data indicate an increase in atmospheric CO2 concentration of around 5.3 GtC (2.5 ppm), attributed to a combination of increasing emissions and receding El Niño conditions. This living data update documents changes in the methods and data sets used in this new global carbon budget compared with previous publications of this data set
Abstract. Accurate assessment of anthropogenic carbon dioxide (CO 2 ) emissions and their redistribution among the atmosphere, ocean, and terrestrial biosphere is important to better understand the global carbon cycle, support the development of climate policies, and project future climate change. Here we describe data sets and a methodology to quantify all major components of the global carbon budget, including their uncertainties, based on the combination of a range of data, algorithms, statistics, and model estimates and their interpretation by a broad scientific community. We discuss changes compared to previous estimates as well as consistency within and among components, alongside methodology and data limitations. CO 2 emissions from fossil fuels and industry (E FF ) are based on energy statistics and cement production data, while emissions from land-use change (E LUC ), mainly deforestation, are based on combined evidence from land-cover-change data, fire activity associated with deforestation, and models. The global atmospheric CO 2 concentration is measured directly and its rate of growth (G ATM ) is computed from the annual changes in concentration. The mean ocean CO 2 sink (S OCEAN ) is based on observations from the 1990s, while the annual anomalies and trends are estimated with ocean models. The variability in S OCEAN is evaluated with data products based on surveys of ocean CO 2 measurements. The global residual terrestrial CO 2 sink (S LAND ) is estimated by the difference of the other terms of the global carbon budget and compared to results of independent dynamic global vegetation models forced by observed climate, CO 2 , and land-cover change (some including nitrogen-carbon interactions). We compare the mean land and ocean fluxes and their variability to estimates from three atmospheric inverse methods for three broad latitude bands. All uncertainties are reported as ±1σ , reflecting the current capacity to characterise the annual estimates of each component of the global carbon budget. For the last decade available (2005)(2006)(2007)(2008)(2009)(2010)(2011)(2012)(2013)(2014), E FF was 9.0 ± 0.5 GtC yr −1 , E LUC was 0.9 ± 0.5 GtC yr −1 , G ATM was 4.4 ± 0.1 GtC yr −1 , S OCEAN was 2.6 ± 0.5 GtC yr −1 , and S LAND was 3.0 ± 0.8 GtC yr −1 . For the year 2014 alone, E FF grew to 9.8 ± 0.5 GtC yr −1 , 0.6 % above 2013, continuing the growth trend in these emissions, albeit at a slower rate compared to the average growth of 2.2 % yr −1 that took place during 2005-2014. Also, for 2014, E LUC was 1.1 ± 0.5 GtC yr −1 , G ATM was 3.9 ± 0.2 GtC yr −1 , S OCEAN was 2.9 ± 0.5 GtC yr −1 , and S LAND was 4.1 ± 0.9 GtC yr −1 . G ATM was lower in 2014 compared to the past decade (2005)(2006)(2007)(2008)(2009)(2010)(2011)(2012)(2013)(2014), reflecting a larger S LAND for that year. The global atmospheric CO 2 concentration reached 397.15 ± 0.10 ppm averaged over 2014. For 2015, preliminary data indicate that the growth in E FF will be near or slightly below zero, with a projection of −0.6 [range of −1.6 to +0....
Abstract. Accurate assessment of anthropogenic carbon dioxide (CO 2 ) emissions and their redistribution among the atmosphere, ocean, and terrestrial biosphere is important to better understand the global carbon cycle, support the development of climate policies, and project future climate change. Here we describe data sets and a methodology to quantify all major components of the global carbon budget, including their uncertainties, based on the combination of a range of data, algorithms, statistics, and model estimates and their interpretation by a broad scientific community. We discuss changes compared to previous estimates, consistency within and among components, alongside methodology and data limitations. CO 2 emissions from fossil Earth Syst. Sci. Data, 7, 47-85, 2015 www.earth-syst-sci-data.net/7/47/2015/ C. Le Quéré et al.: Global carbon budget 2014 49 fuel combustion and cement production (E FF ) are based on energy statistics and cement production data, respectively, while emissions from land-use change (E LUC ), mainly deforestation, are based on combined evidence from land-cover-change data, fire activity associated with deforestation, and models. The global atmospheric CO 2 concentration is measured directly and its rate of growth (G ATM ) is computed from the annual changes in concentration. The mean ocean CO 2 sink (S OCEAN ) is based on observations from the 1990s, while the annual anomalies and trends are estimated with ocean models. The variability in S OCEAN is evaluated with data products based on surveys of ocean CO 2 measurements. The global residual terrestrial CO 2 sink (S LAND ) is estimated by the difference of the other terms of the global carbon budget and compared to results of independent dynamic global vegetation models forced by observed climate, CO 2 , and land-coverchange (some including nitrogen-carbon interactions). We compare the mean land and ocean fluxes and their variability to estimates from three atmospheric inverse methods for three broad latitude bands. All uncertainties are reported as ±1σ , reflecting the current capacity to characterise the annual estimates of each component of the global carbon budget. For the last decade available (2004)(2005)(2006)(2007)(2008)(2009)(2010)(2011)(2012)(2013), E FF was 8.9 ± 0.4 GtC yr −1 , E LUC 0.9 ± 0.5 GtC yr −1 , G ATM 4.3 ± 0.1 GtC yr −1 , S OCEAN 2.6 ± 0.5 GtC yr −1 , and S LAND 2.9 ± 0.8 GtC yr −1 . For year 2013 alone, E FF grew to 9.9 ± 0.5 GtC yr −1 , 2.3 % above 2012, continuing the growth trend in these emissions, E LUC was 0.9 ± 0.5 GtC yr −1 , G ATM was 5.4 ± 0.2 GtC yr −1 , S OCEAN was 2.9 ± 0.5 GtC yr −1 , and S LAND was 2.5 ± 0.9 GtC yr −1 . G ATM was high in 2013, reflecting a steady increase in E FF and smaller and opposite changes between S OCEAN and S LAND compared to the past decade (2004)(2005)(2006)(2007)(2008)(2009)(2010)(2011)(2012)(2013). The global atmospheric CO 2 concentration reached 395.31 ± 0.10 ppm averaged over 2013. We estimate that E FF will increase by 2.5 % (1.3-3.5 %) to 10.1 ± 0.6 GtC in 2...
[1] We investigate the interannual variability in the flux of CO 2 between the atmosphere and the Southern Ocean on the basis of hindcast simulations with a coupled physical-biogeochemical-ecological model with particular emphasis on the role of the Southern Annular Mode (SAM). The simulations are run under either pre-industrial or historical CO 2 concentrations, permitting us to separately investigate natural, anthropogenic, and contemporary CO 2 flux variability. We find large interannual variability (±0.19 PgC yr À1 ) in the contemporary air-sea CO 2 flux from the Southern Ocean (<35°S). Forty-three percent of the contemporary air-sea CO 2 flux variance is coherent with SAM, mostly driven by variations in the flux of natural CO 2 , for which SAM explains 48%. Positive phases of the SAM are associated with anomalous outgassing of natural CO 2 at a rate of 0.1 PgC yr À1 per standard deviation of the SAM. In contrast, we find an anomalous uptake of anthropogenic CO 2 at a rate of 0.01 PgC yr À1 during positive phases of the SAM. This uptake of anthropogenic CO 2 only slightly mitigates the outgassing of natural CO 2 , so that a positive SAM is associated with anomalous outgassing in contemporaneous times. The primary cause of the natural CO 2 outgassing is anomalously high oceanic partial pressures of CO 2 caused by elevated dissolved inorganic carbon (DIC) concentrations. These anomalies in DIC are primarily a result of the circulation changes associated with the southward shift and strengthening of the zonal winds during positive phases of the SAM. The secular, positive trend in the SAM has led to a reduction in the rate of increase of the uptake of CO 2 by the Southern Ocean over the past 50 years.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.