Organic amendments are often reported to improve soil properties, promote plant growth, and improve crop yield. This study aimed to investigate the effects of the biochar and compost produced from sewage sludge and olive pomace on soil hydraulic properties, water flow, and P transport (i.e., sorption) using numerical modeling (HYDRUS-1D) applied to two soil types (Terra Rosa and Rendzina). Evaporation and leaching experiments on soil cores and repacked soil columns were performed to determine the soil water retention, hydraulic conductivity, P leaching potential, and P sorption capacity of these mixtures. In the majority of treatments, the soil water retention showed a small increase compared to the control soil. A reliable fit with the modified van Genuchten model was found, which was also confirmed by water flow modeling of leaching experiments (R2 0.99). The results showed a high P sorption in all the treatments (Kd 21.24 to 53.68 cm3 g−1), and a high model reliability when the inverse modeling procedure was used (R2 0.93–0.99). Overall, adding sewage sludge or olive pomace as compost or biochar improved the Terra Rosa and Rendzina water retention and did not increase the P mobility in these soils, proving to be a sustainable source of carbon and P-rich materials.
Nitrate leaching through soil layers to groundwater may cause significant degradation of natural resources. The aims of this study were: (i) to estimate soil hydraulic properties (SHPs) of the similar soil type with same management on various locations; (ii) to determine annual water dynamics; and (iii) to estimate the impact of subsoil horizon properties on nitrate leaching. The final goal was to compare the influence of different SHPs and layering on water dynamics and nitrate leaching. The study was conducted in central Croatia (Zagreb), at four locations on Calcaric Phaeozem, Calcaric Regosol, and Calcaric Fluvic Phaeozem soil types. Soil hydraulic parameters were estimated using the HYPROP system and HYPROP-FIT software. Water dynamics and nitrate leaching were evaluated using HYDRUS 2D/3D during a period of 365 days. The amount of water in the soil under saturated conditions varied from 0.422 to 0.535 cm3 cm–3 while the hydraulic conductivity varied from 3 cm day−1 to 990.9 cm day−1. Even though all locations have the same land use and climatic conditions with similar physical properties, hydraulic parameters varied substantially. The amount and velocity of transported nitrate (HYDRUS 2D/3D) were affected by reduced hydraulic conductivity of the subsoil as nitrates are primarily transported via advective flux. Despite the large differences in SHPs of the topsoil layers, the deeper soil layers, having similar SHPs, imposed a buffering effect preventing faster nitrate downward transport. This contributed to a very similar distribution of nitrates through the soil profile at the end of simulation period. This case study indicated the importance of carefully selecting relevant parameters in multilayered soil systems when evaluating groundwater pollution risk.
In Mediterranean region where seawater intrudes porous karst matrix and salinizes soil and water resources, water used for the irrigation of crops is frequently of inadequate quality. Measuring the productivity of horticultural crops under saline conditions helps to determine whether and when to irrigate crops if water is saline, thus balance between crop water and salt stress. A greenhouse pot experiment was set to study the effects of saline irrigation water on faba bean (Vicia faba L.) biomass and yield parameters. NaCl salinity was applied in a nutrient solution as follows: NaCl 0 as control (nutrient solution without added NaCl), NaCl 50 (control + 50 mM NaCl), and NaCl 100 (control + 100 mM NaCl). Five weeks after salinity treatment started, plant height (cm), number of lateral branches per plant, number of pods and seeds per plant, shoot weight (g), pod weight (g) and seed weight (g) were determined. Compared to control, increased irrigation water salinity statistically significantly decreased measured parameters (P<0.01), except for number of branches and pods. Faba bean productivity decreased proportionally to the irrigation water salinity level, suggesting that optimal saline agriculture management strategy can be to allow for the acceptable yield loss in order to avoid plant water stress.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.