High-dose antithrombin III therapy had no effect on 28-day all-cause mortality in adult patients with severe sepsis and septic shock when administered within 6 hours after the onset. High-dose antithrombin III was associated with an increased risk of hemorrhage when administered with heparin. There was some evidence to suggest a treatment benefit of antithrombin III in the subgroup of patients not receiving concomitant heparin.
Severe protein-calorie malnutrition is a major problem in many intensive care (ICU) patients, due to the increased catabolic state often associated with acute severe illness and the frequent presence of prior chronic wasting conditions. Nutritional support is thus an important part of the management of these patients. Over the years, enteral nutrition (EN) has gained considerable popularity, due to its favorable effects on the digestive tract and its lower cost and rate of complications compared to parenteral nutrition. However, clinicians caring for ICU patients are often faced with contradictory data and difficult decisions when having to determine the optimal timing and modalities of EN administration, estimation of patient requirements, and choice of formulas. The purpose of this paper is to provide practical guidelines on these various aspects of enteral nutritional support, based on presently available evidence.
Introduction Our understanding of septic acute kidney injury (AKI) remains incomplete. A fundamental step is the use of animal models designed to meet the criteria of human sepsis. Therefore, we dynamically assessed renal haemodynamic, microvascular and metabolic responses to, and ultrastructural sequelae of, sepsis in a porcine model of faecal peritonitisinduced progressive hyperdynamic sepsis.
IntroductionIn almost half of all sepsis patients, acute kidney injury (AKI) develops. However, the pathobiologic differences between sepsis patients with and without AKI are only poorly understood. We used a unique opportunity to examine dynamic inflammatory, renal hemodynamic, and microvascular changes in two clinically relevant large-animal models of sepsis. Our aim was to assess variability in renal responses to sepsis and to identify both hemodynamic and nonhemodynamic mechanisms discriminating individuals with AKI from those in whom AKI did not develop.MethodsThirty-six pigs were anesthetized, mechanically ventilated, and instrumented. After a recovery period, progressive sepsis was induced either by peritonitis (n = 13) or by continuous intravenous infusion of live Pseudomonas aeruginosa (n = 15). Eight sham operated-on animals served as time-matched controls. All animals received standard intensive care unit (ICU) care, including goal-directed hemodynamic management. Before, and at 12, 18, and 22 hours of sepsis, systemic and renal (ultrasound flow probe) hemodynamics, renal cortex microcirculation (laser Doppler), inflammation (interleukin-6 (IL-6), tumor necrosis factor-alpha (TNF-α), oxidative stress (thiobarbituric acid reactive species (TBARS), nitrite/nitrate concentrations (NOx), and renal oxygen kinetics and energy metabolism were measured.ResultsIn 14 (50%) pigs, AKI developed (62% in peritonitis, 40% in bacteria infusion model). Fecal peritonitis resulted in hyperdynamic circulation, whereas continuous bacteria infusion was associated with normodynamic hemodynamics. Despite insults of equal magnitude, comparable systemic hemodynamic response, and uniform supportive treatment, only those pigs with AKI exhibited a progressive increase in renal vascular resistance. This intrarenal vasoconstriction occurred predominantly in the live-bacteria infusion model. In contrast to AKI-free animals, the development of septic AKI was preceded by early and remarkable inflammatory response (TNF-α, IL-6) and oxidative stress (TBARS).ConclusionsThe observed variability in susceptibility to septic AKI in our models replicates that of human disease. Early abnormal host response accompanied by subsequent uncoupling between systemic and renal vascular resistance appear to be major determinants in the early phase of porcine septic AKI. Nonuniform and model-related renal hemodynamic responses that are unpredictable from systemic changes should be taken into consideration when evaluating hemodynamic therapeutic interventions in septic AKI.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.