Cancer stem cells are rare tumor cells characterized by their ability to self-renew and to induce tumorigenesis. They are present in gliomas and may be responsible for the lethality of these incurable brain tumors. In the most aggressive and invasive type, glioblastoma multiforme (GBM), an average of about one year spans the period between detection and death [1]. The resistence of gliomas to current therapies may be related to the existence of cancer stem cells [2-6]. We find that human gliomas display a stemness signature and demonstrate that HEDGEHOG (HH)-GLI signaling regulates the expression of stemness genes in and the self-renewal of CD133(+) glioma cancer stem cells. HH-GLI signaling is also required for sustained glioma growth and survival. It displays additive and synergistic effects with temozolomide (TMZ), the current chemotherapeutic agent of choice. TMZ, however, does not block glioma stem cell self-renewal. Finally, interference of HH-GLI signaling with cyclopamine or through lentiviral-mediated silencing demonstrates that the tumorigenicity of human gliomas in mice requires an active pathway. Our results reveal the essential role of HH-GLI signaling in controlling the behavior of human glioma cancer stem cells and offer new therapeutic possibilities.
Overexpression of the polycomb group protein enhancer of zeste homologue 2 (EZH2) occurs in diverse malignancies, including prostate cancer, breast cancer, and glioblastoma multiforme (GBM). Based on its ability to modulate transcription of key genes implicated in cell cycle control, DNA repair, and cell differentiation, EZH2 is believed to play a crucial role in tissue-specific stem cell maintenance and tumor development. Here, we show that targeted pharmacologic disruption of EZH2 by the S-adenosylhomocysteine hydrolase inhibitor 3-deazaneplanocin A (DZNep), or its specific downregulation by short hairpin RNA (shRNA), strongly impairs GBM cancer stem cell (CSC) self-renewal in vitro and tumor-initiating capacity in vivo. Using genome-wide expression analysis of DZNep-treated GBM CSCs, we found the expression of c-myc, recently reported to be essential for GBM CSCs, to be strongly repressed upon EZH2 depletion. Specific shRNA-mediated downregulation of EZH2 in combination with chromatin immunoprecipitation experiments revealed that c-myc is a direct target of EZH2 in GBM CSCs. Taken together, our observations provide evidence that direct transcriptional regulation of c-myc by EZH2 may constitute a novel mechanism underlying GBM CSC maintenance and suggest that EZH2 may be a valuable new therapeutic target for GBM management.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.