This work focuses on ultrasonic melt treatment (UST) in a launder upon pilotscale direct chill (DC) casting of 152-mm-diameter billets from an AA6XXX alloy with Zr addition. Two casting temperatures (650°C and 665°C) were used to assess their effect on the resulting microstructure (grain size, particle size, and number density). Structure refinement results show the feasibility of UST in the DC casting launder. This is quantified through the corresponding reduction of grain size by around 50% in the billet center, or more towards the billet surface, reduction of the average Al 3 Zr particle size, and increase in the particle number density. A higher Al 3 Zr particle density was obtained when the alloy was cast at 665°C. Numerical simulation results and suggestions on how to improve the treatment quality of UST in DC casting launder are also provided.
This study concerns the numerical simulation of two competing ultrasonic treatment (UST) strategies for microstructure refinement in the direct-chill (DC) casting of aluminium alloys. In the first, more conventional, case, the sonotrode vibrating at 17.3 kHz is immersed in the hop-top to treat the sump melt pool, in the second case, the sonotrode is inserted between baffles in the launder. It is known that microstructure refinement depends on the intensity of acoustic cavitation and the residence time of the treated fluid in the cavitation zone. The geometry, acoustic field intensity, induced flow velocities, and local temperature are factors which affect this treatment. The mathematical model developed in this work couples flow velocity, acoustics modified by cavitation, heat transfer, and solidification at the macroscale, with Lagrangian refiner particles, used to determine: (a) their residence time in the active zones, and (b) their eventual distribution in the sump as a function of the velocity field. This is the first attempt at using particle models as an efficient, though indirect, alternative to microstructure simulation, and the results indicate that UST in the launder, assisted with baffle separators, yields a more uniform distribution of refining particles, avoiding the strong acoustic streaming jet that, otherwise, accompanies hot-top treatment, and may lead to the strong segregation of refining particles. Experiments conducted in parallel to the numerical studies in this work appeared to support the results obtained in the simulation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.