Genome-wide association (GWA) studies have identified a large number of single-nucleotide polymorphisms (SNPs) associated with disease phenotypes. As most GWA studies have been performed primarily in populations of European descent, this review examines the issues involved in extending consideration of GWA studies to diverse worldwide populations. Although challenges exist with such issues as imputation, admixture, and replication, investigation of diverse populations in GWA studies has significant potential to advance the project of mapping the genetic determinants of complex diseases for the human population as a whole.In the last few years, genome-wide association (GWA) studies have produced numerous successes in identifying genetic variants that contribute to complex human traits1 , 2. Several factors are recognized3 , 4 as having dramatically enlarged the number of genotypephenotype associations documented for a wide range of phenotypes5 , 6. These include: increasingly dense sets of genetic markers, increasingly large sample sizes, improved resources on genomic variation, and new statistical techniques for genotype imputation 7 , 8 and meta-analysis9 , 10 that leverage these resources.With few exceptions, however, GWA studies have been centered in populations of European descent (Box 1), and the degree to which knowledge gained from these studies is transferrable to other populations has not been extensively investigated. Recent reports such populations as Chinese11 , 12, Japanese13 , 14, Koreans15 , 16, and Pacific islanders from Kosrae17 , 18 represent some of the first in a new wave of GWA studies in non-European populations, as researchers seek to search additional groups for new findings on widely distributed phenotypes, to consider new phenotypes that are more prevalent in non-European populations, and to establish the generality of findings obtained initially in Europeans and European Americans. NIH Public Access Author ManuscriptNat Rev Genet. Author manuscript; available in PMC 2011 May 1. Populations in past GWA studiesTo assess the extent to which non-European populations have been incorporated into GWA studies, we examined the distribution of study populations across 492 GWA articles in the National Human Genome Research Institute catalog of GWA results6 , 130. This database provides a manually curated list of SNP-phenotype associations (P < 10 −5 ) identified in studies with at least 100,000 SNPs. Article classifications were assessed independently by two raters, with discrepancies resolved by consensus in discussions with a third rater. The figure on the right tabulates classifications based on whether articles used individuals of European descent, individuals of non-European descent, or a combination of individuals of European and non-European descent. Eight articles that provided insufficient information about study subjects are omitted, so that each bar represents 80 or 81 articles, grouped by date. The later date ranges are narrower, indicating that in more recent time periods, ...
Disturbance of the tight junction (TJ) complexes between brain endothelial cells leads to increased paracellular permeability, allowing leukocyte entry into inflamed brain tissue and also contributing to edema formation. The current study dissects the mechanisms by which a chemokine, CCL2, induces TJ disassembly. It investigates the potential role of selective internalization of TJ transmembrane proteins (occludin and claudin-5) in increased permeability of the brain endothelial barrier in vitro. To map the internalization and intracellular fate of occludin and claudin-5, green fluorescent protein fusion proteins of these TJ proteins were generated and imaged by fluorescent microscopy with simultaneous measurement of transendothelial electrical resistance. During CCL2-induced reductions in transendothelial electrical resistance, claudin-5 and occludin became internalized via caveolae and further processed to early (EEA1؉) and recycling (Rab4؉) endosomes but not to late endosomes. Western blot analysis of fractions collected from a sucrose gradient showed the presence of claudin-5 and occludin in the same fractions that contained caveolin-1. For the first time, these results suggest an underlying molecular mechanism by which the pro-inflammatory chemokine CCL2 mediates brain endothelial barrier disruption during CNS inflammation.
The PROSPECT study validates that despite having more comorbid risk factors than men, women have less extensive coronary artery disease by both angiographic and IVUS measures, and that lesions in women compared with men have less plaque rupture, less necrotic core and calcium, similar plaque burden, and smaller lumens. TCFA may also be a stronger marker of plaque vulnerability in women than men.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.