1. Extra-and intracellular recordings were made from CA1 cells in hippocampal slices in vitro. The effects of ionophoretically applied GABA on somatic and dendritic regions were studied. 2. Jonophoresis of GABA at dendritic sites gave a reciprocal effect by inhibiting the effect of excitatory synapses close to the dendritic application, while facilitating those lying further away. For example, GABA delivered to the mid-radiatum dendritic region reduced the population spike generated by a radiatum volley, while facilitating the population spike evoked by oriens fibre stimulation. Similarly, when single cells were recorded from, mid-apical dendritic delivery of GABA abolished the synaptically driven discharges evoked by fibres terminating at this part of the dendritic tree, but facilitated the responses to input from fibres terminating on the basal dendrites of the same cell. 3. With intracellular recording two effects were observed. Applied near the soma, GABA induced a hyperpolarization associated with an increased membrane con-ductance. When applied to dendrites, GABA caused a depolarization also associated with an increased membrane conductance. Both types of GABA applications could inhibit cell discharges, although in some cases the depolarizing response could facilitate other excitatory influences or cause cell firing by itself. 4. Both the hyperpolarizing and depolarizing GABA responses persisted after blockade of synaptic transmission by applying a low calcium high magnesium solution, indicating mediation via a direct effect upon the cell membrane. 5. The reversal potential for the hyperpolarizing GABA effect was similar to the equilibrium potential for the i.p.s.p. evoked from alveus or orthodromically, and was 10-12 mV more negative than the resting potential. The size of the depolarizing response was also dependent upon the membrane potential. By extrapolation an estimated equilibrium potential was calculated as about-40 mV. 6. Our results support the idea that the hyperpolarizing basket cell inhibition at the soma is mediated by the release of GABA. This hyperpolarizing response causes a general inhibition of firing. The dendritic effects of GABA, however, seem to repre-* Present address:
BackgroundThe growth and recurrence of several cancers appear to be driven by a population of cancer stem cells (CSCs). Glioblastoma, the most common primary brain tumor, is invariably fatal, with a median survival of approximately 1 year. Although experimental data have suggested the importance of CSCs, few data exist regarding the potential relevance and importance of these cells in a clinical setting.MethodsWe here present the first seven patients treated with a dendritic cell (DC)-based vaccine targeting CSCs in a solid tumor. Brain tumor biopsies were dissociated into single-cell suspensions, and autologous CSCs were expanded in vitro as tumorspheres. From these, CSC-mRNA was amplified and transfected into monocyte-derived autologous DCs. The DCs were aliquoted to 9–18 vaccines containing 107 cells each. These vaccines were injected intradermally at specified intervals after the patients had received a standard 6-week course of post-operative radio-chemotherapy. The study was registered with the ClinicalTrials.gov identifier NCT00846456.ResultsAutologous CSC cultures were established from ten out of eleven tumors. High-quality RNA was isolated, and mRNA was amplified in all cases. Seven patients were able to be weaned from corticosteroids to receive DC immunotherapy. An immune response induced by vaccination was identified in all seven patients. No patients developed adverse autoimmune events or other side effects. Compared to matched controls, progression-free survival was 2.9 times longer in vaccinated patients (median 694 vs. 236 days, p = 0.0018, log-rank test).ConclusionThese findings suggest that vaccination against glioblastoma stem cells is safe, well-tolerated, and may prolong progression-free survival.Electronic supplementary materialThe online version of this article (doi:10.1007/s00262-013-1453-3) contains supplementary material, which is available to authorized users.
BackgroundGlioblastomas are invasive therapy resistant brain tumors with extremely poor prognosis. The Glioma initiating cell (GIC) population contributes to therapeutic resistance and tumor recurrence. Targeting GIC-associated gene candidates could significantly impact GBM tumorigenicity. Here, we investigate a protein kinase, PBK/TOPK as a candidate for regulating growth, survival and in vivo tumorigenicity of GICs.MethodsPBK is highly upregulated in GICs and GBM tissues as shown by RNA and protein analyses. We knocked down PBK using shRNA vectors and inhibited the function of PBK protein with a pharmacological PBK inhibitor, HITOPK-032. We assessed viability, tumorsphere formation and apoptosis in three patient derived GIC cultures.ResultsGene knockdown of PBK led to decreased viability and sphere formation and in one culture an increase in apoptosis. Treatment of cells with inhibitor HITOPK-032 (5 μM and 10 μM) almost completely abolished growth and elicited a large increase in apoptosis in all three cultures. HI-TOPK-032 treatment (5 mg/kg and 10 mg/kg bodyweight) in vivo resulted in diminished growth of experimentally induced subcutaneous GBM tumors in mice. We also carried out multi-culture assays of cell survival to investigate the relative effects on GICs compared with the normal neural stem cells (NSCs) and their differentiated counterparts. Normal NSCs seemed to withstand treatment slightly better than the GICs.ConclusionOur study of identification and functional validation of PBK suggests that this candidate can be a promising molecular target for GBM treatment.Electronic supplementary materialThe online version of this article (doi:10.1186/s12943-015-0398-x) contains supplementary material, which is available to authorized users.
It was long held as an axiom that new neurons are not produced in the adult human brain. More recent studies have identified multipotent cells whose progeny express glial or neuronal markers. This discovery may lead to new therapeutic strategies for CNS disorders, either by stimulating neurogenesis in vivo or by transplanting multipotent progenitor cells (MPCs) that have been propagated and differentiated in vitro. The clinical application of such approaches will be limited by the ability of these cells to develop into functional neurons. To facilitate an understanding of mechanisms regulating neurogenesis in the adult human brain, we characterized the developmental processes MPCs go through when progressing to a neuron. Human tissue was harvested during temporal lobe resections because of epilepsy, and cells were cultured as neurospheres. Our findings demonstrate that at an early stage, these cells often stain with neuronal markers without possessing any functional neuronal properties. Over a period of 4 weeks in culture, cells go through characteristic steps of morphological and electrophysiological development towards functional neurons; they develop a polarized appearance with multiple dendrites, whereas the membrane potential becomes more negative and the input resistance decreases [from -48 +/- 10 mV/557 +/- 85 MOmega (n = 15) between days 7 and 11 to -59 +/- 9 mV/380 +/- 79 MOmega (n = 9) between days 25 and 38, respectively]. Active membrane properties were first observed on day 7 and consisted of a voltage-gated K+-current. Later in the second week the cells developed voltage-gated Ca2+-channels and fired small Ca2+-driven action potentials. Immature Na+-driven action potentials developed from the beginning of the third week, and by the end of the fourth week the cells fired repetitive action potentials with a completely mature waveform generated by the combined action of the voltage-gated ionic channels INa, IA and IK. After 4 weeks, the newly formed neurons also communicated by the use of GABAergic and glutamatergic synapses. The adult human brain thus harbours MPCs, which have the ability to develop into neurons and in doing this follow characteristic steps of neurogenesis as seen in the developing brain.
Glioblastoma is the most common brain tumor. Median survival in unselected patients is <10 months. The tumor harbors stem-like cells that self-renew and propagate upon serial transplantation in mice, although the clinical relevance of these cells has not been well documented. We have performed the first genome-wide analysis that directly relates the gene expression profile of nine enriched populations of glioblastoma stem cells (GSCs) to five identically isolated and cultivated populations of stem cells from the normal adult human brain. Although the two cell types share common stem- and lineage-related markers, GSCs show a more heterogeneous gene expression. We identified a number of pathways that are dysregulated in GSCs. A subset of these pathways has previously been identified in leukemic stem cells, suggesting that cancer stem cells of different origin may have common features. Genes upregulated in GSCs were also highly expressed in embryonic and induced pluripotent stem cells. We found that canonical Wnt-signaling plays an important role in GSCs, but not in adult human neural stem cells. As well we identified a 30-gene signature highly overexpressed in GSCs. The expression of these signature genes correlates with clinical outcome and demonstrates the clinical relevance of GSCs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.