Stem cell (SC) division, deployment, and differentiation are processes that contribute to corneal epithelial renewal. Until now studying the destiny of these cells in a living mammal has not been possible. However, the advent of inducible multicolor genetic tagging and powerful imaging technologies has rendered this achievable in the translucent and readily accessible murine cornea. K14CreERT2‐Confetti mice that harbor two copies of the Brainbow 2.1 cassette, yielding up to 10 colors from the stochastic recombination of fluorescent proteins, were used to monitor K‐14+ progenitor cell dynamics within the corneal epithelium in live animals. Multicolored columns of cells emerged from the basal limbal epithelium as they expanded and migrated linearly at a rate of 10.8 µm/day toward the central cornea. Moreover, the permanent expression of fluorophores, passed on from progenitor to progeny, assisted in discriminating individual clones as spectrally distinct streaks containing more than 1,000 cells within the illuminated area. The centripetal clonal expansion is suggestive that a single progenitor cell is responsible for maintaining a narrow corridor of corneal epithelial cells. Our data are in agreement with the limbus as the repository for SC as opposed to SC being distributed throughout the central cornea. This is the first report describing stem/progenitor cell fate determination in the murine cornea using multicolor genetic tracing. This model represents a powerful new resource to monitor SC kinetics and fate choice under homeostatic conditions, and may assist in assessing clonal evolution during corneal development, aging, wound‐healing, disease, and following transplantation. Stem Cells 2015;33:157–169
SummaryThe function, stability and mutual interactions of selected nuclear-encoded subunits of respiratory complexes III and IV were studied in the Trypanosoma brucei procyclics using RNA interference (RNAi). The growth rates and oxygen consumption of clonal cell lines of knock-downs for apocytochrome c 1 (apo c 1 ) and the Rieske Fe-S protein (Rieske) of complex III, and cytochrome c oxidase subunit 6 (cox6) of complex IV were markedly decreased after RNAi induction. Western analysis of mitochondrial lysates using specific antibodies confirmed complete elimination of the targeted proteins 4-6 days after induction. The Rieske protein was reduced in the apo c 1 knock-down and vice versa, indicating a mutual interdependence of these components of complex III. However, another subunit of complex IV remained at the wild-type level in the cox6 knock-down. As revealed by twodimensional blue native/SDS-PAGE electrophoresis, silencing of a single subunit resulted in the disruption of the respective complex, while the other complex remained unaffected. Membrane potential was reproducibly decreased in the knock-downs and the activities of complex III and/or IV, but not complex I, were drastically reduced, as measured by activity assays and histochemical staining. Using specific inhibitors, we have shown that in procyclics with depleted subunits of the respiratory complexes the flow of electrons was partially re-directed to the alternative č ě š Š š sˇČ eˇ oxidase. The apparent absence in T. brucei procyclics of a supercomplex composed of complexes I and III may represent an ancestral state of the respiratory chain.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.